| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Nagel R. — One-parameter semigroups of positive operators | 10, 69, 352 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 60.I |
| Olver P.J. — Equivalence, Invariants and Symmetry | 34, 43, 80, 108, ll4, 134, 137, 158, 172, 174, 192, 239, 377 |
| Cahn R.N. — Semi-Simple Lie Algebras and Their Representations | 1 |
| Hicks N. — Notes on differential geometry | 68 |
| Kreuzer M., Robbiano L. — Computational commutative algebra 1 | 237 |
| Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 236 |
| Artin M. — Algebra | 125 |
| Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations | 39 |
| Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 35, 320 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 377 |
| Ryder L.H. — Quantum Field Theory | 30ff |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 180 |
| Sepanski R.M. — Compact Lie Groups | 4 |
| Johnson M., Jha W., Biliotti M. — Handbook of Finite Translation Planes | 597 |
| Reid M., Szendroi B. — Geometry and Topology | 152 |
| Atanasov K.T., Turner J.C., Shannon A.G. — New Visual Perspectives on Fibonacci Numbers | 250 |
| Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | see special orthogonal group |
| James G., Liebeck M.W. — Representations and Characters of Groups | 368 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 303 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 303 |
| Engel K.-J., Nagel R. — Short Course on Operator Semigroups | 32 |
| Marcus D.A. — Combinatorics: A Problem Oriented Approach | 99 |
| Steenrod N.E. — The Topology of Fibre Bundles | 34 |
| Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations (preliminary version of 10 September 1998) | 57, 327 |
| Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 229, 252 |
| Ziman J.M. — Elements of Advanced Quantum Theory | 241—247, 251, 254 |
| Ramond P. — Field Theory: A Modern Primer | 8, 248 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 38, 53 |
| Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis | 7 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 60.I |
| van Eijndhoven S.J.L., de Greef J. — Trajectory Spaces, Generalized Functions and Llnbounded Operators | 74 |
| Thaller B. — The Dirac equation | 45 |
| Gruenberg K.W. — Linear Geometry | 4, 144 |
| Ramond P. — Field Theory: A modern Primer | 8 |
| Gong S., Gong Y. — Concise Complex Analysis | 67 |
| De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 320 |
| Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | xiii, 81 |
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 6, 126, 148 (see also “Spin”) |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 306 |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | see “Special orthogonal group” |
| Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 62 |
| Coxeter H.S.M. — Regular Polytopes | 45, 53—56, 62, 108 |
| Griffits D. — Introduction to elementary particles | 107 (see also “Groups”) |
| Miller W. — Symmetry Groups and Their Applications | 18 |
| Wen-Tsun W. — Mathematics Mechanization | c3e4. 3, c3e5. 3 |
| Schulman L.S. — Techniques and applications of path integration | 205 |
| Zee A. — Quantum field theory in a nutshell | 111 |
| Greiner W., Mueller B. — Quantum mechanics: symmetries | 81 ff. |
| Miller W. — Lie theory and special functions | 31, 215, 256 |
| Tomotada O. — Quantum invariants: a study of knots, 3-manifolds, and their sets | 39 |
| Whitehead G.W. — Elements of Homotopy Theory | 10 |
| Grosche C., Steiner F. — Handbook of Feynman path integrals | 105, 106, 262-269 |
| Curtis M.L. — Abstract Linear Algebra | 130 |
| Woodhouse N.M.J. — Geometric quantization | 54, 57, 105 |
| Moh T.T. — Algebra | 50 |
| Steenrod N. — The topology of fiber bundles | 34 |
| Nouredine Z. — Quantum Mechanics: Concepts and Applications | 378 |
| Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectra | 89, 142, 149 |
| Coxeter H. — Regular polytopes | 45, 53—56, 62, 108 |
| Dym H., McKean H.P. — Fourier Series and Integrals | 228—236 |
| Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 453—459, 470, 481, 501 |
| Moh T.T. — Algebra | 50 |
| Thaller B. — The Dirac equation | 45 |
| Dauns J. — A Concrete Approach to Division Rings | 10—17 |
| Boerner H. — Representations of Groups | 33, 315 |
| Mineev V.P. — Topologically stable defects and solutions in ordered media | 6 |
| Gruenberg K.W., Weir A.J. — Linear Geometry | 4, 144 |
| Anderson J.L. — Principles of Relativity Physics | 10, 37, 78, 79, 86, 146 |
| Miller W. — Symmetry and Separation of Variables | 161, 185, 230 |
| Bluman G.W. — Similarity Methods for Differential Equations | 18, 35, 39, 41, 46, 57, 58, 64, 73, 88, 97 |
| Wang D. (ed.), Zheng Z. (ed.) — Differential Equations with Symbolic Computations | 75 |
| Giles R. — Mathematical foundation of thermodynamics | 176, 227 |
| Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 228—236 |
| Greiner W., Maruhn J. — Nuclear models | 16 |
| Kleinert H. — Gauge fields in condensed matter (part 2) | 73, 89 |
| Schutz B. — Geometrical Methods in Mathematical Physics | see "SO(3)" |
| Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 68 |