Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Rotation group



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Nagel R. — One-parameter semigroups of positive operators10, 69, 352
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 260.I
Olver P.J. — Equivalence, Invariants and Symmetry34, 43, 80, 108, ll4, 134, 137, 158, 172, 174, 192, 239, 377
Cahn R.N. — Semi-Simple Lie Algebras and Their Representations1
Hicks N. — Notes on differential geometry68
Kreuzer M., Robbiano L. — Computational commutative algebra 1237
Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity236
Artin M. — Algebra125
Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations39
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations35, 320
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry377
Ryder L.H. — Quantum Field Theory30ff
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry180
Sepanski R.M. — Compact Lie Groups4
Johnson M., Jha W., Biliotti M. — Handbook of Finite Translation Planes597
Reid M., Szendroi B. — Geometry and Topology152
Atanasov K.T., Turner J.C., Shannon A.G. — New Visual Perspectives on Fibonacci Numbers250
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understandingsee special orthogonal group
James G., Liebeck M.W. — Representations and Characters of Groups368
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration303
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1303
Engel K.-J., Nagel R. — Short Course on Operator Semigroups32
Marcus D.A. — Combinatorics: A Problem Oriented Approach99
Steenrod N.E. — The Topology of Fibre Bundles34
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations (preliminary version of 10 September 1998)57, 327
Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1)229, 252
Ziman J.M. — Elements of Advanced Quantum Theory241—247, 251, 254
Ramond P. — Field Theory: A Modern Primer8, 248
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry38, 53
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis7
Ito K. — Encyclopedic Dictionary of Mathematics60.I
van Eijndhoven S.J.L., de Greef J. — Trajectory Spaces, Generalized Functions and Llnbounded Operators74
Thaller B. — The Dirac equation45
Gruenberg K.W. — Linear Geometry4, 144
Ramond P. — Field Theory: A modern Primer8
Gong S., Gong Y. — Concise Complex Analysis67
De Felice F., Clarke C.J.S. — Relativity on curved manifolds320
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applicationsxiii, 81
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime6, 126, 148 (see also “Spin”)
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds306
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fieldssee “Special orthogonal group”
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1)62
Coxeter H.S.M. — Regular Polytopes45, 53—56, 62, 108
Griffits D. — Introduction to elementary particles107 (see also “Groups”)
Miller W. — Symmetry Groups and Their Applications18
Wen-Tsun W. — Mathematics Mechanizationc3e4. 3, c3e5. 3
Schulman L.S. — Techniques and applications of path integration205
Zee A. — Quantum field theory in a nutshell111
Greiner W., Mueller B. — Quantum mechanics: symmetries81 ff.
Miller W. — Lie theory and special functions31, 215, 256
Tomotada O. — Quantum invariants: a study of knots, 3-manifolds, and their sets39
Whitehead G.W. — Elements of Homotopy Theory10
Grosche C., Steiner F. — Handbook of Feynman path integrals105, 106, 262-269
Curtis M.L. — Abstract Linear Algebra130
Woodhouse N.M.J. — Geometric quantization54, 57, 105
Moh T.T. — Algebra50
Steenrod N. — The topology of fiber bundles34
Nouredine Z. — Quantum Mechanics: Concepts and Applications378
Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectra89, 142, 149
Coxeter H. — Regular polytopes45, 53—56, 62, 108
Dym H., McKean H.P. — Fourier Series and Integrals228—236
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods453—459, 470, 481, 501
Moh T.T. — Algebra50
Thaller B. — The Dirac equation45
Dauns J. — A Concrete Approach to Division Rings10—17
Boerner H. — Representations of Groups33, 315
Mineev V.P. — Topologically stable defects and solutions in ordered media6
Gruenberg K.W., Weir A.J. — Linear Geometry4, 144
Anderson J.L. — Principles of Relativity Physics10, 37, 78, 79, 86, 146
Miller W. — Symmetry and Separation of Variables161, 185, 230
Bluman G.W. — Similarity Methods for Differential Equations18, 35, 39, 41, 46, 57, 58, 64, 73, 88, 97
Wang D. (ed.), Zheng Z. (ed.) — Differential Equations with Symbolic Computations75
Giles R. — Mathematical foundation of thermodynamics176, 227
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph)228—236
Greiner W., Maruhn J. — Nuclear models16
Kleinert H. — Gauge fields in condensed matter (part 2)73, 89
Schutz B. — Geometrical Methods in Mathematical Physicssee "SO(3)"
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics68
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå