Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Wedge product



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Guillemin V., Pollack A. — Differential topology156, 162
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1)66
Dummit D.S., Foote R.M. — Abstract algebra447
Berger M. — A Panoramic View of Riemannian Geometry185
Olver P.J. — Equivalence, Invariants and Symmetry25, 26, 30, 253
Hicks N. — Notes on differential geometry51
Miranda R. — Graduate studies in mathematics (vol.5). Algebraic curves and Riemann surfaces113
Lee J.M. — Riemannian Manifolds: an Introduction to Curvature14
Lee J.M. — Introduction to Smooth Manifolds209
Goldstein H., Poole C., Safko J. — Classical mechanics295, 296
Cherry W., Ye Z. — Nevanlinna's Theory of Value Distribution: The Second Main Theorem and Its Error Terms31
Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation87
Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4179
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable528
Palmer J. — Planar Ising Correlations274
Adler A.R., Ramanan S. — Moduli of Abelian Varieties, Vol. 164Section 19 page 54
Krantz S.G. — Function Theory of Several Complex Variables500
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications598
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems314
Blyth T.S., Robertson E.F. — Basic Linear Algebra112
Pugh C.C. — Real Mathematical Analysis318
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry209—214
Naber G.L. — Topology, Geometry and Gauge Fields11, 13, 210, 232
Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2535, 538
Kirk D. — Graphics gems (Vol. 3)85—88
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry208
Cantwell B.J., Crighton D.G. (Ed), Ablowitz M.J. (Ed) — Introduction to Symmetry Analysis58
Bleecker D. — Gauge Theory and Variational Principles3
O'Neill B. — Elementary differential geometry27—28, 153
Haake F. — Quantum signatures of chaos406, 434
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories295
De Felice F., Clarke C.J.S. — Relativity on curved manifoldssee "Exterior product"
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory933
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups42
Tabor M. — Chaos and Integrability in Nonlinear Dynamics: An Introduction55, 85
Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1275
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds168
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1)203
Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity11, 85 f.
Brualdi R.A., Ryser H.J. — Combinatorial Matrix Theory322—323
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics63
Janich K. — Topology42
Tamura I. — Topology of lie groups, I and II139, 143
Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1275
Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus172
Bertlmann R.A. — Anomalies in Quantum Field Theory40, 91, 373
Hatfield B. — Quantum field theory of point particles and strings558
Paeth A.W. (ed.) — Graphics gems (volume 5)85- 88
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry209—214
Haller G. — Chaos Near Resonance381, 383
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity56
Browder A. — Mathematical Analysis: An Introduction(see Exterior product)
Riley, Hobson — Mathematical Methods for Physics and Engineeringsee "Vector product"
Kinsey L.C. — Topology of surfaces140
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I.551
Israel W. (ed.) — Relativity, astrophysics and cosmology59-297
Krantz S.G. — Function theory of several complex variables500
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory26
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems314
Naber G.L. — Topology, Geometry and Gauge Fields11, 13, 210, 232
Israel W. (ed.) — Relativity, astrophysics and cosmology59—297
Israel W. — Relativity, Astrophysics and Cosmology59—297
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds297
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus79
Frankel T. — The geometry of physics: An introductionsee "Exterior product"
Maclane S. — Homology228
Santalo L., Kac M. — Integral geometry and geometric probability354
Schutz B. — Geometrical Methods in Mathematical Physics117 Wedge product, components of
Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics)112
Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19)7
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics551
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory295
Nash C., Sen S. — Topology and geometry for physicists41—42
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå