Книга | Страницы для поиска |
Guillemin V., Pollack A. — Differential topology | 181 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 69, 98 |
Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 52 |
Olver P.J. — Equivalence, Invariants and Symmetry | 29, 286 |
Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 49 |
Goldberg S.I. — Curvature and homology | 280 |
Lee J.M. — Introduction to Smooth Manifolds | 278 |
Isham J. — Modern Differential Geometry for Physics | 142 |
Gromov M. — Metric Structures for Riemannian and Non-Riemannian Spaces | B. |
Gardner R.B. — Method of Equivalence and Its Applications | 24 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 108, 170, 171 |
Voisin C. — Hodge theory and complex algebraic geometry 1 | 55, 94 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 350 |
Ryder L.H. — Quantum Field Theory | 73 |
Bryant R.L., Chern S.S., Gardner R.B. — Exterior differential systems | 410, 436 |
Thomas A.D. — Zeta-functions | 166, 170 |
Hirzebruch F. — Topological Methods in Algebraic Geometry | 37, 118 |
Krantz S.G. — Function Theory of Several Complex Variables | 95, 270 |
Krupkova O. — The Geometry of Ordinary Variational Equations | 36 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 278 |
Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 11 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 191 |
Naber G.L. — Topology, Geometry and Gauge Fields | 62, 253 |
Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 3 |
Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 2) | 289 |
Morita S. — Geometry of differential forms | 118 |
Morita Sh. — Geometry of Differential Forms | 118 |
Gong S., Gong Y. — Concise Complex Analysis | 7 |
Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 31 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 225 |
Munkres J.R. — Analysis on manifolds | 331 |
Fomenko А.Т., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 231 |
Morimoto M. — Introduction to Sato's hyperfunctions | 98 |
Audin M. — Torus Actions on Symplectic Manifolds | 49 |
Zee A. — Quantum field theory in a nutshell | 219 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 55, 328—331, 354 |
Straumann N. — General relativity and relativistic astrophysics | 33, 40, 71 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 278 |
Woodhouse N.M.J. — Geometric quantization | 260 |
M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds | 10 |
Thomas A.D. — Zeta functions, introduction to algebraic geometry | 166, 170 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 225 |
Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 28 |
Naber G.L. — Topology, Geometry and Gauge Fields | 62, 253 |
Wald R.M. — General Relativity | 429 |
Zeidler E. — Oxford User's Guide to Mathematics | 305, 341, 486, 527 |
Kumpera A., Spencer D.C. — Lie Equations: General Theory. Vol. 1 | 15, 21, 28, 40, 69, 73, 85 |
Snygg J. — Clifford algebra: a computational tool for physicists | 133—134 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 94 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 183 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 2, 4, 27 ff |
Snygg J. — Clifford algebra: a computational tool for physicists | 133—134 |
Schutz B. — Geometrical Methods in Mathematical Physics | 140 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 225 |
Isham C. — Modern Differential Geometry for Physicists | 142 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 118 |