Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Arveson W. — An Invitation to C-Algebras | 17 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 495 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 110 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 199 |
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 153 |
Bognar J. — Indefinite Inner Product Spaces | 120 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 69, 72, 75, 95—138, 135, 136, 211, 212 |
Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 45ff |
Benson D. — Mathematics and music | 408, 410 |
Douglas R.G. — Banach algebra techniques in operator theory | 121, 145 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 171 |
Appell J.M., Kalitvin A.S., Zabrejko P.P. — Partial Integral Operators and Integro-Differential Equations | 43 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 85, 310, 373 |
Gorenflo R., Vessella S. — Abel Integral Equations: Analysis and Applications | 6 |
Sepanski R.M. — Compact Lie Groups | 56 |
Halmos P.R. — Hilbert Space Problem Book | 170 |
Arveson W. — A Short Course on Spectral Theory | 13, 68 |
Carr J. — Applications of Centre Manifold Theory | 111—112, 114 |
Chipot M., Quittner P. — Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. 3 | 444 |
Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra | 48 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 40, 41, 45 |
Higson N., Roe J. — Analytic K-Homology | 8, 29 |
Hensley D. — Continued Fractions | 87, 90, 91, 169, 170, 189 |
Robert A. — Non-Standard Analysis | 11.2.6 |
Gohberg I., Goldberg S. — Basic Operator Theory | 83 |
Aliprantis Ch.D. — Positive Operators | 267, 275, 279, 296 |
Goldberg M.A. (ed.) — Solution Methods for Integral Equations | 9, 20—21, 24, 36, 92, 110, 120, 123 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 199 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 93 |
Fell J.M.G. — Induced Representations and Banach *-Algebraic Bundles | 25 |
Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 51, 52, 93, 110, 293 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $199^1$ (see also “Relatively compact”, “Relatively form compact”) |
Streater R.F. (Ed) — Mathematics of Contemporary Physics | 33, 34 |
Rudin W. — Functional analysis | 97 |
Hennion H., Herve L. — Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness | 6 |
Antman S.S. — Nonlinear Problems of Elasticity | 156, 239, 693 |
Lang S. — Real Analysis | 170, 219 |
Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysis | VI/4 |
Thaller B. — The Dirac equation | 229 |
Kress R., Gehring F.W. — Numerical Analysis | 288 |
Dieudonne J. — Foundation of Modern Analysis | 11.2 |
Ferrera J. (Ed), Lopez-Gomez J. (Ed) — Ten Mathematical Essays on Approximation in Analysis and Topology | 153 |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 130 ff |
Schechter M. — Spectra of partial differential operators | 7 |
Baladi V. — Positive Transfer Operators And Decay Of Correlations | 31 |
Kirillov A.A. — Elements of the Theory of Representations | 42 |
Lang S. — SL2: With 33 Figures | 10, 232, 383 |
Al-Khalili J.S., Roeckl E. — The Euroschool Lectures on Physics with Exotic Beams, Vol. 2 | 10, 232, 383 |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 40, 41, 45 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 199 |
Doran R.S., Wichmann J. — Approximate Identities and Factorization in Banach Modules | 203 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 53 |
Conway J.B. — A Course in Functional Analysis | 41, 177, 219, 278 |
Kigami J. — Analysis on Fractals | 92, 94, 198 |
Trefethen L.N., Bau D. — Numerical Linear Algebra | 265, 331 |
Kral J. — Integral Operators in Potential Theory (Lecture Notes in Mathematics) | 102 |
Dieudonne J. — Foundation of Modern Analysis | 11.2 |
Vogel C.R. — Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) | 17 |
Krasnosel'skii M.A., Rtuickii Yz.B. — Convex Functions and Orlicz Spaces | 194 |
Cordes H. — Elliptic Pseudo-Differential Operators - An Abstract Theory | 268 |
Mikhlin S.G., Prossdorf S. — Singular Integral Operators | 32 |
Bourgin R.D. — Geometric Aspects of Convex Sets with the Radon-Nikodym Property | see "Operator" |
Schechter M. — Operator methods in quantum mechanics | 48 |
Aliprantis C. — Principles of real analysis | 226 |
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 88, 272 |
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 66—75, 629, 676 |
Douglas R.G. — Banach algebra techniques in operator theory | 121, 145 |
Carroll R.W. — Mathematical physics | 233 |
Thaller B. — The Dirac equation | 229 |
Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 53, 84 |
Bennett C., Sharpley R.C. — Interpolation of Operators | 202 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 39 |
Kuo H.-H. — Gaussian Measures in Banach Spaces | 7 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 109, 110 |
M.A. Krasnosel'skii, Ya.B. Rutickii — Convex Functions and Orlicz Spaces | 194 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 351 |
Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 383 |
Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 355 |
Good I.J. — Information, Weight of Evidence. the Singularity Between Probability Measures and Signal Detection | 85 |
Kantorovitz Sh. — Spectral Theory of Banach Space Operators | 66 |
Rempel S., Schulze B.-W. — Index Theory of Elliptic Boundary Problems | 14 |
Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 8 |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 123 |
Singh R., Manhas J. — Composition Operators on Function Spaces (North-Holland Mathematics Studies) | 31, 136, 154 |
Cheney W. — Analysis for Applied Mathematics | 85, 351 |
Stakgold I. — Boundary value problems of mathematical physics | see "Completely continuous transformation" |
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 88, 272 |
Moiseiwitsch B.L. — Integral Equations | 92 |
Lang S. — SL2 (R) (Graduate Texts in Mathematics) | 10, 232, 383 |
D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 89, 143—166, 236, 238, 243, 244 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "operator, compact" |