|
|
Результат поиска |
Поиск книг, содержащих: Legendre transform
Книга | Страницы для поиска | Sornette D. — Critical phenomena in natural sciences | | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 55, 145 | Hunter J.K., Nachtergaele B. — Applied Analysis | 417, 418 | Cerrai S. — Second Order PDEs in Finite and Infinite Dimension | 12, 281 | Dietterich T.G., Becker S., Ghahramani Z. — Advances in neural information processing systems 14 (Vol. 1 and vol. 2) | 873 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 419.C | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 281, 282, 287 | Evans L.C. — Partial Differential Equations | 121, 122, 561 | Levin B.Ya. — Lectures on entire functions | 195 | Ganesh A., O'Connell N., Wischik D. — Big Queues | See convex conjugate | Hormander L. — Notions of Convexity | 17, 67 | Herrmann H.J. (ed.), Roux S. (ed.) — Statistical models for the fracture of disordered media | 140, 252 | Parisi G. — Statistical field theory | 187 | Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 137 | Honerkamp J. — Statistical Physics | 47 | Kolassa J.E. — Series Approximation Methods in Statistics | 66, 83, 119, 128 | Bovier A., Gill R. (Ed), Ripley B.D. (Ed) — Statistical Mechanics of Disordered Systems: A Mathematical Perspective | 6, 20 | Auslender A., Teboulle M. — Asymptotic Cones and Functions in Optimization and Variational Inequalities | see conjugate | Cartier P., Julia B., Moussa P. — Frontiers in Number Theory, Physics, and Geometry II | 628 | Dacorogna B. — Direct Methods in the Calculus of Variations | 120, 138 | Masujima M. — Path integral quantization and stochastic quantization | 4 | McEneaney W.M. — Max-Plus Methods for Nonlinear Control and Estimation | 15 | Falconer K.J. — Techniques in Fractal Geometry | 189, 190, 198, 202 | Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 131 | Simon B. — The Statistical Mechanics of Lattice Gases (vol 1) | 66—75 | Eschrig H. — The Fundamentals of Density Functional Theory | 102, 120 | Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 112, 653 | Goutsias J., Vincent L., Bloomberg D.S. — Mathematical morphology and its applications to image signal processing | 287 | Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 64 | Alber H.D., Dold A. (Ed) — Materials with Memory: Initial-Boundary Value Problems for Constitutive Equations with Internal Variables | 150, 151, 152 | Antman S.S. — Nonlinear Problems of Elasticity | 54, 93, 290 | Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 34 | Makarov B.M. — Selected Problems in Real Analysis | 72 | Ito K. — Encyclopedic Dictionary of Mathematics | 419.C | Brown L.S. — Quantum Field Theory | 103, 327, 433 | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 206 | Jeffrey A., Taniuti T. — Mathematics in Science and Engineering: volume 9. Non-linear wave propagation | 311, 349 ff, 351 | Vanderbei R.J. — Linear Programming: Foundations and Extensions | 86 | Zee A. — Quantum field theory in a nutshell | 209 | Shankar R. — Principles of quantum mechanics | 87 | Siegel W. — Fields | VC3, XB5 | Amit D.J. — Field theory, the renormalization group, and critical phenomena | 86—91, 94, 99—100, 139—141, 145, 301, 378 | Kleinert H. — Gauge fields in condensed matter (part 4) | 1247 | Zakrzewski W.J. — Low Dimensional Sigma Models | 22 | Sneddon I.N. — Mixed boundary value problems in potential theory | 69 | Callen H. — Thermodynamics and an Introduction to Thermostatistics | 142, 285 | Tranter C.J. — Integral transforms in mathematical physics | 96 | Bornemann F. — Homogenization in Time of Singularly Perturbed Mechanical Systems (Lecture Notes in Mathematics, 1687) | 74, 85 | Siegel W. — Fields | VC3, XB5 | Chaikin P., Lubensky T. — Principles of condensed matter physics | 112, 653 | Lang R. — Spectral Theory of Random Schrodinger Operators: A Genetic Introduction | 62, 68 | Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 305 | Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 489 | Vafa C., Zaslow E. — Mirror symmetry | 703 | Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 8, 91, 95, 248 | Ticciati R. — Quantum field theory for mathematicians | 76 | Lemm J.C. — Bayesian field theory | 334, 337 | Langhaar H.R. — Energy Methods in Applied Mechanics | 120, 136, 244 | Langhaar H.R. — Energy Methods in Applied Mechanics | 120, 136, 244 | Natterer F., Wubbeling F. — Mathematical methods in image reconstruction | 157, 158 | Smith R. — Smart material systems: model development | 63, 311, 437—439 | Morandi G. — Statistical Mechanics: An Intermediate Course | 17 | Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications | 39 | Kleinert H. — Gauge fields in condensed matter (part 2) | 8, 115, 123 | Falconer K. — Fractal geometry: mathematical foundations and applications | 281, 282, 287 | Braides A. — Gamma-convergence for Beginners | 72 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 126, 127, 131 | Honerkamp J. — Statistical physics: an advanced approach with applications | 47 | Andrea Braides — Gamma-convergence for Beginners (Oxford Lecture Series in Mathematics and Its Applications, 22) | 72 |
|
|