| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 102, 128, 130, 251, 278, 291 |
| Bartle R.G. — The Elements of Real Analysis | 162 |
| Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in FORTRAN77 | 343 |
| Keisler H.J. — Elementary calculus | 162 |
| Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 37 |
| Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB | 3 |
| Barbeau E.J. — Polynomials: a problem book | 160 (5.1.1), 243, 375 (8.19), 381 (8.31), 418 |
| Shampine L.F., Allen R.C., Pruess Jr.S. — Fundamentals of numerical computing | 252 |
| Conway J.B. — Functions of One Complex Variable | 27 |
| Lee J.M. — Introduction to Topological Manifolds | 65, 68 |
| Loeve M. — Probability Theory (part 2) | 102 |
| Edwards H. — Advanced Calculus: A Differential Forms Approach | 159n |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 462 |
| Honsberger R. — Mathematical Delights | 6 |
| Mendelson B. — Introduction to Topology | 125 |
| Link G. (Ed) — One Hundred Years of Russell's Paradox: Mathematics, Logic, Philosophy | 234 |
| Estep D.J. — Practical Analysis in One Variable | 170, 444 |
| Kaczynski T., Mischaikow K.M. — Computational Homology | 412 |
| Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 38 |
| Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 43 |
| James I.M. — Topological and Uniform Spaces | 116 |
| Searcid M. — Metric Spaces | 195, 219, 222, 223, 289 |
| Strauss W.A. — Partial Differential Equations: An Introduction | 385 |
| Loeve M. — Probability Theory (part 1) | 102 |
| Brown J.R. — Philosophy of Mathematics: An Introduction to a World of Proofs and Pictures | 25—30, 172 |
| Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 29, 61, 211, 217 |
| Pugh C.C. — Real Mathematical Analysis | 38, 83, 84 |
| Lange K. — Optimization | 36 |
| Morris S.A. — Topology without tears | 86 |
| Devaney R.L. — An introduction to chaotic dynamical systems | 11 |
| Spivak M. — Calculus | 110, 117, 121, 282 |
| Lang S.A. — Undergraduate Analysis | 62 |
| Burn R.P. — Numbers and Functions: Steps to Analysis | 7.12—7.21, App. 1 |
| Carter J.S. — How Surfaces Intersect in Space: A Friendly Introduction to Topology | 13 |
| Carmo M.P. — Differential geometry of curves and surfaces | 124 |
| Monk J.D. — Mathematical Logic | 347 |
| Weir A.J. — Lebesgue Integration and Measure | 231 |
| Tourlakis G.J. — Lectures in Logic and Set Theory: Mathematical Logic | 197 |
| Strichartz R.S. — The way of analysis | 130, 158 |
| Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 9 |
| Barwise J. (ed.) — Handbook of Mathematical Logic | 1001, 1042f |
| D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 299, 301, 304, 6, 352, 395—6 |
| Kuttler K. — Calculus, Applications and Theory | 94, 113 |
| Krantz S.G. — Handbook of Real Variables | 65 |
| Kreyszig E. — Advanced engineering mathematics | 796 |
| Doran R.S., Wichmann J. — Approximate Identities and Factorization in Banach Modules | 15 |
| Bluman G.W. — Problem Book for First Year Calculus | 232, [VII.25] |
| Bonar D.D., Khoury M.J. — Real Infinite Series | 189 |
| Marsden J., Weinstein A. — Calculus unlimited | 62 |
| Ash R.B. — Real Variables with Basic Metric Space Topology | 75—76 |
| Hungerford T.W. — Algebra | 167 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 51, 161 |
| de Souza P.N., Silva J.-N. — Berkeley Problems in Mathematics | 161, 162, 174, 201, 205, 236, 275, 326, 363, 364 |
| Browder A. — Mathematical Analysis: An Introduction | 59 |
| Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in Fortran 90 | 343 |
| Cox D.A., Little J., O'Shea D. — Using Algebraic Geometry | 31 |
| David O.Tall — Advanced Mathematical Thinking | 163, 257 |
| Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 265 |
| Stewart G.W. — Afternotes on Numerical Analysis | 4 |
| Marsden J., Weinstein A. — Calculus 1 | 141, 142 |
| Lang S. — Undergraduate analysis | 62 |
| Katz V.J. — A History of Mathematics: An Introduction | 710—711, 713, 819 |
| Ponstein J. — Nonstandart Analysis | 103 |
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 48 |
| United States NAVY — Mathematics, pre-calculus and introduction to probability (Navy course) | 6-4, 6-25 |
| Courant R. — Differential and Integral Calculus, Vol. 1 | 66—67 |
| James I.M. (ed.) — Topological and Uniform Spaces | 116 |
| Stillwell J. — Mathematics and its history | 196, 197 |
| Burden R.L., Faires J.D. — Numerical analysis | 7 |
| Berlekamp E., Conway J., Guy R. — Winning Ways for your mathematical plays.Volume 2. | 426—438 |
| Marotto F. — Introduction to Mathematical Modeling Using Discrete Dynamical Systems | 153 |
| D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 299—301, 304—306, 352, 395—396 |
| Truss J.K. — Foundations of Mathematical Analysis | 95, 104, 135, 319 |
| Truss J. — Foundations of mathematical analysis | 95, 104, 135, 319 |
| J. K. Truss — Foundations of mathematical analysis MCet | 95, 104, 135, 319 |
| Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 142, 153, 174, 178, 201, 225, 267, 292 |
| Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 142, 153, 174, 178, 201, 225, 267, 292 |