Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 236, 283 |
Bartle R.G. — The Elements of Integration | 44, 75 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 471 |
Bartle R.G. — The Elements of Real Analysis | 359 |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 334 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 348 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 78 |
Rudin W. — Principles of Mathematical Analysis | 155, 167, 321 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 17, 24 |
Evans L.C. — Partial Differential Equations | 134, 154, 211, 412, 452, 510, 606, 648 |
Meyn S.P., Tweedie R.L. — Markov Chains and Stochastic Stability | 518 |
Apostol T.M. — Mathematical Analysis | 270 |
Olver F.W.J. — Asymptotics and Special Functions | 54 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 181—182 |
Rudin W. — Real and Complex Analysis | 26, 28, 181 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 360 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 181—182 I |
Vaeth M. — Volterra and integral equations of vector functions | 81 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 54 |
Loeve M. — Probability Theory (part 2) | 126, 72 |
Govindarajulu Z. — Sequential Statistics | 197 |
Adams R.A. — Sobolev Spaces | 17 |
Heikkila S., Lakshmikantham V. — Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations | 4 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 90 |
Halmos P.R. — Hilbert Space Problem Book | Prefrase, 148, 228 |
Kurtz D.S., Swartz C.W. — Theories of Integration | 110, 187, 239 |
Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | 104, 151, 199 |
Falconer K.J. — Techniques in Fractal Geometry | 12 |
Loeve M. — Probability Theory (part 1) | 126 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 17, 24 |
Berberian S.K. — Fundamentals of Real Analysis | 176 |
Pytlak R. — Numerical Methods for Optimal Control Problems with State Constraints | 15 |
Malliaris A.G., Brock W.A. — Stochastic methods in economics and finance | 10, 59 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 17, 24 |
Naber G.L. — Topology, Geometry and Gauge Fields | 276 |
Gudder S.P. — Stochastic methods in quantum mechanics | 24 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $17^1$, $24^1$ |
Shreve S.E. — Stochastic Calculus for Finance 2 | 27 |
Lang S. — Real Analysis | 273, 314 |
Bichteler K. — Integration - a functional approach | 55, 104 |
Rudin W. — Real and complex analysis | 26, 180 |
Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 13.8 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 44, 172 |
Weir A.J. — Lebesgue Integration and Measure | 106, 109, 113 |
Strichartz R.S. — The way of analysis | 625, 666, 670 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 0.6 |
Hu S.-T. — Elements of real analysis | 105, 294 |
Billingsley P. — Probability and Measure | 72, 213, 214, 16.6, 21.21, 348 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 17, 24 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 71, 76, 173 |
Steele M.J. — Stochastic Calculus and Financial Applications | 278 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 50, 100, 223 |
Emanuel Parzen — Stochastic processes (Classics in Applied Mathematics) | 128,218, 251 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 141, 184, 210 |
Durrett R. — Probability: Theory and Examples | 16, 49, 264, 468 |
Barut A.O., Raczka R. — Theory of Group Representations and Applications | 639 |
Rao M.M., Swift R.J. — Probability Theory With Applications | 13 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 104 |
Browder A. — Mathematical Analysis: An Introduction | 230 |
Goffman C., Pedrick G. — First course in functional analysis | 127 |
Gleason A. — Fundamentals of Abstract Analysis | 206 |
Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 329 |
Hille E. — Methods in classical and functional analysis | 136, 240 |
Dym H., McKean H.P. — Fourier Series and Integrals | 10 |
Lukacs E. — Characterisic functions | 199, 201 |
McShane E.J., Botts T.A. — Real Analysis | 140 |
Gelbaum B.R. — Problems in Real and Complex Analysis | s 1.2. 147 |
Kuttler K.L. — Modern Analysis | 143, 487 |
Bachman G. — Elements of Abstract Harmonic Analysis | 16 |
Walters P. — An introduction to ergodic theory | 8 |
Ash R. — Basic probability theory | 231 |
Bennett C., Sharpley R.C. — Interpolation of Operators | 16 |
Bickel P., Doksum K. — Mathematical statistics | 514 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | III.8.7 (124), III.6.16 (151), IV.10.10 (828) |
Bear H.S. — A Primer of Lebesgue Integration | 68, 123 |
Naber G.L. — Topology, Geometry and Gauge Fields | 276 |
Salmhofer M. — Renormalization: an introduction | 62 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 10 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | III.3.7 124, III.6.16 151, IV.10.10 328 |
Cheney W. — Analysis for Applied Mathematics | 406 |
Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 14, 35, 58 |
Apostol T. — Mathematical Analysis, Second Edition | 270 |