|
|
Результат поиска |
Поиск книг, содержащих: Mersenne, Marin
Книга | Страницы для поиска | Wolff P. — Breakthroughs in mathematics | 102 | Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 109, 131, 585 | Peek R.P. (ed.), Newby G.B. (ed.) — Scholarly publishing: the electronic frontier | 74 | Ewald W. — From Kant to Hilbert, Vol.2 | 560, 1097 | Ewald W. — From Kant to Hilbert, Vol.1 | 560 | Velleman D.J. — How to Prove It: A Structured Approach | 5 | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 39—40 | Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 8, 28, 36, 98—100, 113, 133, 134—137, 139—144, 181, 195 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 275—276, 278, 295, 304, 478 | Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 245 | Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 143 | Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 391, 407 | Newman J.R. — The World of Mathematics, Volume 1 | 134, 247 fn.—249 fn. | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 275—276, 278, 295, 304, 478 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 61 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 275—276, 278, 295, 304, 478 | von zur Gathen J., Gerhard J. — Modern computer algebra | 79, 486, 718 | Truesdell C. — Essays in the History of Mechanics | 107—108, 153, 308, 332 | Newman J.R. (ed.) — The World of Mathematics, Volume 4 | 134, 247 fn.—249 fn. | Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 375, 389, 391 | Kasner E., Newman J. — Mathematics and the Imagination | 187 | Hellman H. — Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever | 30—31, 35, 37—43, 45 | Struik D.J. — A concise history of mathematics. Volume 2 | 140 | Peter Wolff — Breakthroughs in mathematics | 102 | Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs | 19, 20 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 280, 295 | Kasner E., Newman J. — Mathematics and the imagination | 187 | Katz V.J. — A History of Mathematics: An Introduction | 306, 436, 458 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 560, 1097 | Ore O. — Invitation to Number Theory | 18 | Kline M. — Mathematics for the Nonmathematician | 239, 436 f. | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 60 | Posamentier A.S. — The Fabulous Fibonacci Numbers | 131 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 560 | Kline M. — Mathematical thought from ancient to modern times | 275, 276, 278, 295, 304, 478 | Brezinski C. — History of Continued Fractions and Padé Approximants | 175, 413 | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 3 | Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 236 |
|
|