| Книга | Страницы для поиска |
| Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 124—130 |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | see “Curvilinear coordinates” |
| Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | see “Curvilinear coordinates” |
| Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 11, 82—88 |
| Hamilton W.R. — The collected mathematical papers. Volume 1: geometrical optics | 222. See also Marks of position |
| Wesseling P. — Principles of computational fluid dynamics | 7 |
| Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 213 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 387 |
| Rutherford D.E. — Vector Methods | 26 |
| Eringen A.C. — Mechanics of continua | 210, 260, 540 |
| Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 433—439 |
| Eschenauer H., Olhoff N., Schnell W. — Applied structural mechanics : fundamentals of elasticity, load-bearing structures, structural optimization | 13, 25, 36, 105, 106 |
| Portela A., Charafi A. — Finite Elements Using Maple: A Symbolic Programming Approach | 156 |
| Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 124—130 |
| Kompaneyets A.S., Yankovsky G. — Theoretical Physics | 101 |
| Kreyszig E. — Advanced engineering mathematics | A71 |
| Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 116, 143 |
| Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 86 |
| Houston W.V. — Principles of Mathematical Physics | 93 |
| Grosche C., Steiner F. — Handbook of Feynman path integrals | 10, 162, 365 |
| Bell E.T. — The Development of Mathematics | 522—523 |
| Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 12 |
| Eringen A.C., Suhubi E.S. — Elastodynamics (vol.1) Finite motions | 18, 69, 298 |
| Rutherford D.E. — Vector methods. Applied to differential geometry, mechanics, and potential theory | 26 |
| Fink K. — A brief history of mathematics | 268, 269 |
| Morse P.M. — Methods of theoretical physics | see Curvilinear coordinates |
| Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 473 |
| Hildebrand F.B. — Advanced Calculus for Applications | 298, 346 |
| Griffits D.J. — Introductions to electrodynamics | 38, 547—554 |
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 139, 160, see also "Curvilinear coordinates" |
| Zeidler E. — Oxford User's Guide to Mathematics | 344 |
| Schouten J.A. — Tensor Analysis for Physicists | 59, 110 |
| Langhaar H.R. — Energy Methods in Applied Mechanics | 112—115 |
| Jeans J.H. — The Mathematical Theory of Electricity and Magnetism | 238 |
| Fung Y. — A First Course in Continuum Mechanics: for Physical and Biological Engineers and Scientists | 76 |
| Woods F.S. — Advanced Calculus | 124 |
| Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 31 |
| Greiner W., Maruhn J. — Nuclear models | 151 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 161, 265 |
| Zorich V. — Mathematical Analysis | 161, 265 |
| Moeller C. — The theory of relativity | 228, 233 |