|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Bernoulli polynomials
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Abramowitz M., Stegun I. (eds.) — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table | 803 | Bruce C.Berndt — Ramanujan's Notebooks (part 5) | 411 | Andrews G., Askey R., Roy R. — Special Functions | 20, 615 | Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 276 | Bruce C.Berndt — Ramanujan's Notebooks (part 4) | 273 | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 1091 | Abramowitz M., Stegun I. — Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | 803 | Lang S. — Algebra | 219 | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 173 | Bruce C.Berndt — Ramanujan's Notebooks (part 1) | 13, 138—140, 151, 158—160, 162—163 | Bulirsch R., Stoer J. — Introduction to numerical analysis | 137 | Apostol T.M. — Mathematical Analysis | 251 (Ex. 9.38), 478 (Ex. 16.40) | Lightstone A.H., Robinson A. — Nonarchimedean Fields and Asymptotic Expansions | 124 | Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers | 305, 315p | Olver F.W.J. — Asymptotics and Special Functions | 281—284, 321 | Dingle R. — Asymptotic Expansions: Their Derivation and Interpretation | 46, 47, 336 | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 1091 | Harmuth H.F. — Sequency theory: foundations and applications | 22 | Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 7, 289 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 360, 362n | Kolassa J.E. — Series Approximation Methods in Statistics | 51 | Kac V., Cheung P. — Quantum calculus | 85 | Roman S. — The Umbral Calculus | 12, 93—100, 105, 117—118, 129, 135, 140, 151 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 891, 988 | Hirzebruch F. — Topological Methods in Algebraic Geometry | 16 | Comtet L. — Advanced Combinatorics. The Art of Finite and Infinate Expansions | 48, 164 | Boros G., Moll V. — Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals | 101—102 | Sloane N.J.A. — Handbook of Integer Sequences | 796, 1527 | Rainville E.D. — Special Functions | 299—300, 302 | Spivak M. — Calculus | 541 | Boas R.P. — A Primer of Real Functions | 241 | Apostol T.M. — Modular Functions and Dirichlet Series in Number Theory | 54 | Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 47 | Kuczma M., Choczewski B., Ger R. — Iterative Functional Equations | 90 | Erdelyi A. — Higher Transcendental Functions, Vol. 1 | 36, 43 | Bergeron F., Labelle G., Leroux P. — Combinatorial Species and Tree-like Structures | 268 | Tao T. — Solving Mathematical Problems: A Personal Perspective | 24 | Wang Z.X., Guo D.R., Xia X.J. — Special Functions | 1 | Erdelyi A. — Higher Transcendental Functions, Vol. 3 | see “Polynomials” | Edwards H.M. — Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory | 229 | Wong K. — Asymptotic Approximations of Integrals | 32 | Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 87—93, 99 | Alexanderson G.L. (ed.), Klosinski L.F. (ed.), Larson L.C. (ed.) — William Lowell Putnam Mathematical Competition: Problems and Solutions 1965-1984 | 1981, B—1, 1982, A-2 | Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 36 | Knuth D.E. — The art of computer programming (vol. 1 Fundàmental algorithms) | 44, 113—115, 503 | Lemmermeyer F. — Reciprocity Laws: From Euler to Eisenstein | 333 | Korner T.W. — Exercises in Fourier Analysis | 68—71, 73—74, 76 | Koblitz N. — Introduction to Elliptic Curves and Modular Forms | 54 | Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 619 | Avramidi I.G. — Heat Kernel and Quantum Gravity | 70 | Zhang S., Jin J. — Computation of Special Functions | 1, 2 | Greene D.H., Knuth D.E. — Mathematics for the analysis of algorithms | 62—63 | Greene D.H., Knuth D.E. — Mathematics for the analysis of algorithms | 58—59 | Wong R. — Asymptotic approximations of integrals | 32 | De Bruijn N.G. — Asymptotic methods in analysis | 41 | Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 176 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 360, 362n | Urbanowicz J., Williams K.S. — Congruences for L-Functions | 10 | Abramowitz M., Stegun I.A. (eds.) — Handbook of mathematical functions (without numerical tables) | 803 | Zorich V.A., Cooke R. — Mathematical analysis II | 555 | Zorich V. — Mathematical Analysis | 555 | Koblitz N. — P-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd ed. (Graduate Texts in Mathematics) | 34, 41, 136 | Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions | 9, 13 | Knuth D.E. — Selected papers on discrete mathematics | 77—82 |
|
|