Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Tao T. — Solving Mathematical Problems: A Personal Perspective
Tao T. — Solving Mathematical Problems: A Personal Perspective



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Solving Mathematical Problems: A Personal Perspective

Àâòîð: Tao T.

Àííîòàöèÿ:

Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the various tactics involved in solving mathematical problems at the Mathematical Olympiad level. Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2006

Êîëè÷åñòâî ñòðàíèö: 103

Äîáàâëåíà â êàòàëîã: 01.04.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
(mod n) notation      10
18, multiples of      12—13
2, powers of      14—18
9, multiples of      9 11—13
Algebra      35
Algebra, examination marks problem      86—89
Algebra, polynomials      41—47
Ami-symmetry      25 26 30
Analysis of functions      36—40
Analytic geometry, line segments      77—79
Analytic geometry, partitioning of rectangles      74—77
Analytic geometry, square swimming pool problem      79—82
Analytic geometry, vector arithmetic      69—74
Angles in circles      50—51
Angles of triangles      50—54
Angles, notation      51
Angles, proof of equality      58 66—68
Areas of triangles      58
Arithmetic progression, lengths of triangle      1 2—7
Bernoulli polynomials      24
Chains, partitioning of rectangle      76—77
Chameleon colour combinations      83—85
Chessboard problem      84
Chocolate-breaking game      90—93
Chords, subtended angles      51 67
Circle theorems      49—50 57 67
Circles, angles in      50—51
Colour combinations, chameleons      83—85
Concurrence, perpendicular bisectors of triangle      ix
Conjectures      4
Consequences, proof of      4
Constant polynomials      42
Constructions      58—61
Contradiction, proof by      65—66 76—77
Coordinate geometry      55 58
Coordinate geometry, use in constructions      59
Coprime numbers      10
Cosine rule      3 53
Cubes, sum of      35
Cubic polynomials      42
Cyclic manoeuvres      85
Cyclic quadrilaterals      58
Data, omitting it from problem      5
Data, recording it      3
Data, understanding it      2
Degree of a polynomial (n)      41 42
Degrees of freedom, polynomials      46
Diagonals, lengths of      69—74
Diagrams      3 4
Diameter, angle subtended by (Thales’ theorem)      49—50 57 67
Digits, rearrangement      14—19
Digits, summing      10—14
Digits, summing, powers of 2      16—18
Diophantmc equations      19—22
Direct (forward) approach      54—55
Divisibility, sums of powers      23—26
Divisibility, sums of reciprocals      27—33
Division system, price of penknife      95—97
Elegance of solutions      ix
Elimination of variables      61
Equations, use of      3—4
Equilateral triangles, construction      58—60
Euclidean geometry      49—50
Euclidean geometry, angles in circles      50—51
Euclidean geometry, angles of triangles      51—54
Euclidean geometry, constructions      58—61
Euclidean geometry, equating angles      66—68
Euclidean geometry, ratios      55—58
Euclidean geometry, squares and rectangles      62—66
Examination marks problem      86—89
Exponent variables      20—22
Factorization techniques, Diophantine equations      21
Factors      87
Factors of polynomials      42 44 45—47
Factors of polynomials, roots of      43
Fermat’s Last Theorem      20
Finite problems, simplification      13
Formulae, use of      3—4
Forward (direct) approach      54—55
Functions, analysis      36—40
Functions, polynomials      41—47
Generalization      4 15
Geometry      see “Analytic geometry” “Euclidean
guessing      14 80—82
Heron’s formula      3 4 6—7
Homogeneous polynomials      42
Induction approach      92
Induction, proof by      37—38 40
Inequalities      88
Inequalities in analysis of functions      36—40
Inequalities in Euclidean geometry      65—66
Infinite products      28
Integer lengths, rectangles      74—77
Irreducible polynomials      42
Isosceles triangles      52
Lagrange’s Theorem      9
Levels of difficulty      viii
Line segments, analytic geometry      77—79
Matrix algebra      35
Modification of problems      4—5
Modular arithmetic      9 10
Modular arithmetic, Diophantine equations      21—22
Modular arithmetic, powers of 2      17—18
Modular arithmetic, squares      96
Modular arithmetic, sums of powers      23 24—26
Modular arithmetic, sums of reciprocals      28—33
Modular arithmetic, vectors      85
Multiples of 9      9 11—13
Natural numbers      10
NIM      91
Notation      3
Notation, vectors      84 90
Number theory      9—10
Number theory, digit rearrangement      14—19
Number theory, digit summing      10—14 16
Number theory, Diophantine equations      19—22
Number theory, sums of powers      23—26
Number theory, sums of reciprocals      27—33
Numerators, reduced      27—28
Objectives of problems      2
p-adics      9
Pairwise cancelling      25 26 30 32
Parallel lines      58—60
Parameterization      44
Partitioning of rectangle      74—77
periodicity      23—24
physical constraints      3
Polygons, lengths of line segments      69—74
Polynomials      41—43
Polynomials and reciprocals      43—44
Polynomials, factorization      44 45—47
Powers of 2, digit rearrangement      14—19
Powers of 2, digit sums      16—18
Powers, sums of      23—26
Prime numbers      10
Problem types      1—2
Proof by contradiction      65—66 76—77
Proof by induction      37—38
Proof by induction, strong induction      40
Proving results      6
Pseudo-coordinate geometry      58
Pythagoras’ theorem      57
Quadnlaterals, midpoints of sides      50
Quadratic formula      20 42
Quadratic polynomials      42
Ratios, Euclidean geometry      55—58
Rearrangement of digits      14—19
Reciprocals and polynomials      43—41
Reciprocals, sums of      27—33
Rectangles, chocolate-breaking game      90—93
Rectangles, in a square      62—66
Rectangles, partitioning      74—77
Reduced numerators      27—28
Reformulation of problems      4
Representation of data and objectives      3
Reversal of problems      5
Roots of factors of polynomials      43
Roots of polynomials      42 44 46
Rotations      60
Similar triangles      56 57
Simplification of problems      4 5 6 13 19 91—92
Sine rule      3 53 54
Skill games      93
Special cases      4—5
Special cases in geometry problems      58
Square roots      20
Square swimming pool problem      79—82
Squares (Euclidean geometry)      62—66
Squares, modular arithmetic      96
Steiner’s theorem of parallel axes      74
Steps in problem-solving      1
Strong induction      40
Sums of cubes      35
Sums of digits      10—14
Sums of lengths of line segments      79
Sums of powers      23—26
Sums of powers, powers of 2      16—18
Sums of reciprocals      27—33
Symmetry      30 32 73—74
Tables      89
Tangents to circle      57
Thales’ Theorem      49—50 57 67
Triangle inequality      3 79
Triangles, angles of      50—54
Triangles, areas of      58
Triangles, concurrence of perpendicular bisectors      ix
Triangles, lengths in arithmetic progression      1 2—7
Triangles, similar      56 57
Trigonometry      53—54
Trivial polynomials      42
Variables      3
Variables, elimination of      61
Variables, exponent      20—22
Vector geometry      55 69 73—74
Vectors, chameleon colour combinations      84—85
Vectors, chocolate-breaking game      90
Wilson’s Theorem      9
“Evaluate...” problems      1—2
“Find a...”/“Find all...” problems      1 2
“Is there a...” questions      1 2
“Pocket mathematics”      36
“Show thar...” problems      1—2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå