Книга | Страницы для поиска |
Bartle R.G. — The Elements of Integration | 99 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 19 |
Rudin W. — Principles of Mathematical Analysis | 304 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 270.E, G |
Pollard D. — Convergence of Stochastic Processes | 70 |
Rudin W. — Real and Complex Analysis | 393 |
de Branges L., Rovnyak J. — Square summable power series | 82—86 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 28 |
Loeve M. — Probability Theory (part 2) | 88 |
Zimand M. — Computational Complexity: A Quantitative Perspective | 16 |
Bogachev V.I. — Measure Theory Vol.1 | 16, 41 |
Halmos P.R. — Measure Theory | 42 |
Kurtz D.S., Swartz C.W. — Theories of Integration | 60, 81 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 89 |
Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | xiii, 13, 14, 48, 83, 90, 96, 101, 144, 160, 164 |
Winkler G. — Choquet Order and Simplices | 6 |
Berberian S.K. — Fundamentals of Real Analysis | 95, 365 |
Pugh C.C. — Real Mathematical Analysis | 363 |
Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 25, 121 |
Thomson B.S. — Real Functions | 40 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 429 |
Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.2(6) |
Royden H.L. — Real Analysis | 54, 250 |
Makarov B.M. — Selected Problems in Real Analysis | 100 |
Royden H.L. — Real Analysis | 54, 250 |
Boas R.P. — A Primer of Real Functions | 172, 197, 198 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 295 |
Lang S. — Real Analysis | 284 |
Ito K. — Encyclopedic Dictionary of Mathematics | 270.E, 270.G |
Taylor J.C. — An Introduction to Measure and Probability | 21 |
Bichteler K. — Integration - a functional approach | 49, 64, 93 |
Rudin W. — Real and complex analysis | 397 |
Bogachev V.I. — Measure Theory Vol.2 | I: 16, 11 |
Strichartz R.S. — The way of analysis | 643 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 258, 276 |
Hu S.-T. — Elements of real analysis | 281 |
Billingsley P. — Probability and Measure | 33, 3.2, 162 |
Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 881, 968, 975 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 16, 21, 233 |
Elliot P.D.T.A. — Probabilistic Number Theory Two: Central Limit Theorems | 159 |
Saxe K. — Beginning functional analysis | 37, 38 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 154, 259 |
Durrett R. — Probability: Theory and Examples | 449 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 79 |
Williamson J.H. — Lebesgue Integration | 23, 25 |
Browder A. — Mathematical Analysis: An Introduction | 209 |
Rogosinski W.W. — Volume and integral | 3.4 |
Aliprantis C. — Principles of real analysis | 103 |
Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 298 |
Rogers C.A. — Hausdorff Measures | 1, 128 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 1.2. 11, 4.1. 40,41, s 4.2. 243 |
Kolmogorov A.N., Fomin S.V. — Measure, Lebesgue Integrals, and Hilbert Space | 6, 31, 40 |
Kuttler K.L. — Modern Analysis | 133, 149 |
Donoghue W.F. — Distributions and Fourier transforms | 24 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 126 |
Bachman G. — Elements of Abstract Harmonic Analysis | 164 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | III.5.8 (133) |
Howes N.R — Modern Analysis and Topology | 239 |
Morel J.-M., Solimini S. — Variational Models for Image Segmentation: with seven image processing experiments (Progress in Nonlinear Differential Equations and Their Applications) | (6.2), (6.3) |
Pier J.-P. — Mathematical Analysis during the 20th Century | 57 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 560 |
De Barra G — Measure theory and integration | 27, 45, 94 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | III.5.3 133 |
Cheney W. — Analysis for Applied Mathematics | 382 |
Truss J.K. — Foundations of Mathematical Analysis | 269 |
Truss J. — Foundations of mathematical analysis | 269 |
J. K. Truss — Foundations of mathematical analysis MCet | 269 |