Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Positive operator



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theorysee Operator, Unbounded Operator
Nagel R. — One-parameter semigroups of positive operators120
Hunter J.K., Nachtergaele B. — Applied Analysis198
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis195
Ames W.F. — Numerical methods for Partial Differential Equations112, 334
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure210
Bognar J. — Indefinite Inner Product Spaces147
Hoffman K., Kunze R. — Linear algebra329
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications163—202, 248, 254, 259
Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph)87
Benson D. — Mathematics and music409
Landsman N.P. — Mathematical topics between classical and quantum mechanics45
Douglas R.G. — Banach algebra techniques in operator theory84
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications161
Sepanski R.M. — Compact Lie Groups56
Arveson W. — A Short Course on Spectral Theory41
Zaharopol R. — Invariant Probabilities of Markov-Feller Operators and Their Supports3, 20, 30
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists207
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition34, 48
Higson N., Roe J. — Analytic K-Homology6—7
Araki H. — Mathematical Theory of Quantum Fields203
Hensley D. — Continued Fractions87, 156, 176, 208
Gohberg I., Goldberg S. — Basic Operator Theory121
Aliprantis Ch.D. — Positive Operators2, 7, 24, 266
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory195
Marcus M., Rosen J. — Markov Processes, Gaussian Processes and Local Times122, 127
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis195
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators$195^1$
Streater R.F. (Ed) — Mathematics of Contemporary Physics46
Rudin W. — Functional analysis313, 349
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms)365
Lang S. — Real Analysis169, 174
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros770
Kakosyan A.V., Klebanov L.B., Melamed J.A. — Characterization of Distributions by the Method of Intensively Monotone Operators5
Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysisC/2
Zauderer E. — Partial Differential Equations of Applied Mathematics174
Staffans O. — Well-Posed Linear Systems802
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis466
Sheil-Small T. — Complex polynomials138
Phillips G.M. — Interpolation and Approximation by Polynomials249
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory103, 357, 840
Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1)54, 67
Young R.M. — An Introduction to Nonharmonic Fourier Series34, 48
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness195
Fuhrmann P.A. — A Polynomial Approach to Linear Algebra172
Folland G.B. — Harmonic Analysis in Phase Space129
Neubrander F. (Ed), Ferreyra G.S. (Ed) — Evolution Equations, Vol. 16812, 17
Conway J.B. — A Course in Functional Analysis59, 89
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142)441, 446
Hubbard J.R. — Theory and Problems of Programming with C++411
Krasnosel'skii M.A., Rtuickii Yz.B. — Convex Functions and Orlicz Spaces213
Goffman C., Pedrick G. — First course in functional analysis102
Kreyszig E. — Introductory functional analysis with applications470
Folland G.B., Stein E.M. — Hardy Spaces on Homogeneous Groups129
Aliprantis C. — Principles of real analysis249
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory14, 437
Handelman D.E. — Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem128
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods102
Douglas R.G. — Banach algebra techniques in operator theory84
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks)74
Beckenbach E.F., Bellman R. — Inequalities56, 93, 131, 140, 147—157
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering328
Pier J.-P. — Mathematical Analysis during the 20th Century85
M.A. Krasnosel'skii, Ya.B. Rutickii — Convex Functions and Orlicz Spaces213
Rektorys K. — Survey of Applicable Mathematics.Volume 2.II 354, II 359
Treves F. — Topological Vector Spaces, Distributions And Kernels488
Lee A. — Mathematics Applied to Continuum Mechanics539—541, 554
Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics129
Stakgold I. — Boundary value problems of mathematical physics165, 224
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50)14, 437
Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge)56, 93, 131, 140, 147—157
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)317
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics)317
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå