| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | see Operator, Unbounded Operator |
| Nagel R. — One-parameter semigroups of positive operators | 120 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 198 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 195 |
| Ames W.F. — Numerical methods for Partial Differential Equations | 112, 334 |
| Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 210 |
| Bognar J. — Indefinite Inner Product Spaces | 147 |
| Hoffman K., Kunze R. — Linear algebra | 329 |
| Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 163—202, 248, 254, 259 |
| Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 87 |
| Benson D. — Mathematics and music | 409 |
| Landsman N.P. — Mathematical topics between classical and quantum mechanics | 45 |
| Douglas R.G. — Banach algebra techniques in operator theory | 84 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 161 |
| Sepanski R.M. — Compact Lie Groups | 56 |
| Arveson W. — A Short Course on Spectral Theory | 41 |
| Zaharopol R. — Invariant Probabilities of Markov-Feller Operators and Their Supports | 3, 20, 30 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 207 |
| Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 34, 48 |
| Higson N., Roe J. — Analytic K-Homology | 6—7 |
| Araki H. — Mathematical Theory of Quantum Fields | 203 |
| Hensley D. — Continued Fractions | 87, 156, 176, 208 |
| Gohberg I., Goldberg S. — Basic Operator Theory | 121 |
| Aliprantis Ch.D. — Positive Operators | 2, 7, 24, 266 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 195 |
| Marcus M., Rosen J. — Markov Processes, Gaussian Processes and Local Times | 122, 127 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 195 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $195^1$ |
| Streater R.F. (Ed) — Mathematics of Contemporary Physics | 46 |
| Rudin W. — Functional analysis | 313, 349 |
| Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 365 |
| Lang S. — Real Analysis | 169, 174 |
| Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 770 |
| Kakosyan A.V., Klebanov L.B., Melamed J.A. — Characterization of Distributions by the Method of Intensively Monotone Operators | 5 |
| Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysis | C/2 |
| Zauderer E. — Partial Differential Equations of Applied Mathematics | 174 |
| Staffans O. — Well-Posed Linear Systems | 802 |
| Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 466 |
| Sheil-Small T. — Complex polynomials | 138 |
| Phillips G.M. — Interpolation and Approximation by Polynomials | 249 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 103, 357, 840 |
| Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 54, 67 |
| Young R.M. — An Introduction to Nonharmonic Fourier Series | 34, 48 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 195 |
| Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 172 |
| Folland G.B. — Harmonic Analysis in Phase Space | 129 |
| Neubrander F. (Ed), Ferreyra G.S. (Ed) — Evolution Equations, Vol. 168 | 12, 17 |
| Conway J.B. — A Course in Functional Analysis | 59, 89 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 441, 446 |
| Hubbard J.R. — Theory and Problems of Programming with C++ | 411 |
| Krasnosel'skii M.A., Rtuickii Yz.B. — Convex Functions and Orlicz Spaces | 213 |
| Goffman C., Pedrick G. — First course in functional analysis | 102 |
| Kreyszig E. — Introductory functional analysis with applications | 470 |
| Folland G.B., Stein E.M. — Hardy Spaces on Homogeneous Groups | 129 |
| Aliprantis C. — Principles of real analysis | 249 |
| Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 14, 437 |
| Handelman D.E. — Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem | 128 |
| Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 102 |
| Douglas R.G. — Banach algebra techniques in operator theory | 84 |
| Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 74 |
| Beckenbach E.F., Bellman R. — Inequalities | 56, 93, 131, 140, 147—157 |
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 328 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 85 |
| M.A. Krasnosel'skii, Ya.B. Rutickii — Convex Functions and Orlicz Spaces | 213 |
| Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 354, II 359 |
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 488 |
| Lee A. — Mathematics Applied to Continuum Mechanics | 539—541, 554 |
| Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 129 |
| Stakgold I. — Boundary value problems of mathematical physics | 165, 224 |
| Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 14, 437 |
| Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) | 56, 93, 131, 140, 147—157 |
| J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 317 |
| J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 317 |