|
|
Результат поиска |
Поиск книг, содержащих: Triangular numbers
Книга | Страницы для поиска | Grinstead C.M., Snell J.L. — Introduction to Probability | 108 | Bruce C.Berndt — Ramanujan's Notebooks (part 4) | 110 | Apostol T.M. — Introduction to Analytic Number Theory | 2, 326 | Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 6, 366 | Kac V., Cheung P. — Quantum calculus | 41 | Allouche J.-P., Shallit J. — Automatic Sequences: Theory, Applications, Generalizations | 449 | Sloane N.J.A. — Handbook of Integer Sequences | 27, 1002*, 1718, 1924, 2291 | Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 11 | Pickover C.A. — Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning | 149—151, 328 | Berlekamp E.R., Conway J.H., Guy R.K. — Winning Ways for Your Mathematical Plays, Vol. 1 | 254 | Newman J.R. — The World of Mathematics, Volume 1 | 84 | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 3:1607, 3:1608 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 34, 51, 53—57 | Borwein J.M., Borwein P.B. — Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity | 286, 288 | Heath T.L. (ed.) — The Thirteen Books of Euclid's Elements, Vol. 2 | 289 | Newman J.R. (ed.) — The World of Mathematics, Volume 4 | 84 | Rockmore D. — Stalking the Riemann Hypothesis | 11 | Dudeney H.E. — Amusements in Mathematics | 13, 25, 166 | Fenn R. — Geometry | 6 | Conway J.H. — The Book of Numbers | 33-38, 39, 70 | Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 18, 74, 118—119, 308, 342 | Alexanderson G.L. (ed.), Klosinski L.F. (ed.), Larson L.C. (ed.) — William Lowell Putnam Mathematical Competition: Problems and Solutions 1965-1984 | 1975, A—1 | Struik D.J. — A concise history of mathematics. Volume 2 | 8, 46 | Dudeney H.E. — Amusements in mathematics | 13, 25, 166 | N. Vilenkin, George Yankovsky (translator) — Combinatorial mathematics for recreation | 71 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 3 | II. 289 | Cofman J. — Numbers and shapes revisited: More problems for young mathematicians | 20 | Heath T. — A History of Greek Mathematics, Vol. 2 | 15, 69 | Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 219 | Ore O. — Invitation to Number Theory | 5, 7 | Gullberg J. — Mathematics: from the birth of numbers | 289 | Kraitchik M. — Mathematical Recreations | 45, 67—69 | Cofman J. — What to Solve? Problems and Suggestions for Young Mathematicians | 24, 41, 47, 209 | Lorentz R.A. — Multivariate Birkhoff Interpolation | 36 | Stillwell J. — Mathematics and its history | 28, 30 | Berlekamp E., Conway J., Guy R. — Winning Ways for your mathematical plays.Volume 2. | 254 | Carr G.S. — Formulas and Theorems in Pure Mathematics | 287, E.30, J.69, L.ths63 | Berlekamp E.R., Conway J.H., Guy R.K. — Winning Ways for your mathematical plays | 254 | Posamentier A.S. — The Fabulous Fibonacci Numbers | 89, 89n4, 90, 211—213, 212n17 | Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 22, 34—36, 84, 96, 241—242 |
|
|