|
|
Результат поиска |
Поиск книг, содержащих: Functional calculus
Книга | Страницы для поиска | Arveson W. — An Invitation to C-Algebras | 4 | Hunter J.K., Nachtergaele B. — Applied Analysis | 232 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 222, 225, 245, 263, 286—287 | Roe J. — Index Theory, Coarse Geometry and Topology of Manifolds | 3, 20, 62 | Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach | 1.3 | Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals | 231 | Douglas R.G. — Banach algebra techniques in operator theory | 93, 99 | Davies E. — Spectral Theory and Differential Operators | 24 | Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 231, 284, 285 | Hand L.N., Finch J.D. — Analytical Mechanics | See variational calculus | Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 28, 29, 274, 450 | Halmos P.R. — Hilbert Space Problem Book | 97, 123, 126, 131 | Higson N., Roe J. — Analytic K-Homology | 5, 22 | Barwise J., Etchemendy J., Allwein G. — Language, Proof and Logic | 2 | Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 419 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 222, 225, 245, 263, 286—287 | Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 222, 225, 245, 263, 286—287 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $222^1$, $225^1$, 245, $286^1$—$287^1$ | Rudin W. — Functional analysis | 380 | Jauch J.M. — Foundations of quantum mechanics | 55 | Staffans O. — Well-Posed Linear Systems | 154—163 | von Neumann John, Morgenstern Oscar — Theory of games and economic behavior | 88, 154 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 2.11, 5.10, 8.0, 8.7 | Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | see “Functions that operate” | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 222, 225, 245, 263, 286—287 | Schulman L.S. — Techniques and applications of path integration | 49—52 | Neubrander F. (Ed), Ferreyra G.S. (Ed) — Evolution Equations, Vol. 168 | 142,148, 287, 325 | Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 798 (see also Part II) | Conway J.B. — A Course in Functional Analysis | 58, 206, 243, 295 | Lindenstrauss J., Tzafriri L. — Classical Banach Spaces I, II | 42, 43 | Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 258 | Papadopoulos G.J. (ed.), Devreese J.T. (ed.) — Path integrals and their applications in quantum, statistical, and solid state physics | 86, 90—92 | Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 198—201, 242 | Jauch J.M. — Foundations Of Quantum Mechanics | 55 | Douglas R.G. — Banach algebra techniques in operator theory | 93, 99 | Helson H. — The Spectral Theorem | 14, 33, 39 | Curry H.B. — Foundations of Mathematical Logic | 343 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 293, 331 | Pier J.-P. — Mathematical Analysis during the 20th Century | 254 | Dineen S. — Complex Analysis of Infinite Dimensional Spaces | 421 | Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 13, 80, 323 | Kalton N., Saab E. — Interaction Between Functional Analysis, Harmonic Analysis, and Probability (Lecture Notes in Pure and Applied Mathematics) | 97 | Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 1) | 13, 80, 323 | Curry H.B. — Foundations of mathematical logic | 343 | Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 258 |
|
|