|
|
Результат поиска |
Поиск книг, содержащих: De Rham cohomology
Книга | Страницы для поиска | Weintraub S. — Differential Forms. A complement to vector calculus | | Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 18, 128, 296 | Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 671 | Berger M. — A Panoramic View of Riemannian Geometry | 186 | Lee J.M. — Differential and Physical Geometry | 211 | Gilkey P.B., Leahy J.V., Park J. — Spinors, Spectral Geometry, and Riemannian Submersions | 9 | Frenkel E., Ben-Zvi D. — Vertex algebras and algebraic curves | 138, 222, 321 | Hertling C. — Frobenius manifolds and moduli spaces for singularities | 174 | Husemoeller D. — Elliptic curves | 351 | Mumford D. — Algebraic Geometry I complex projective varieties | 91 | Goldberg S.I. — Curvature and homology | 63—64 | Miranda R. — Graduate studies in mathematics (vol.5). Algebraic curves and Riemann surfaces | 305, 320 | Shnider S., Stasheff J., Markl M. — Operads in Algebra, Topology, and Physics | 220 | Melrose R. — The Atiyah-Singer index theorem (part 3) | 220 | Cuntz J., Skandalis G., Tsygan B. — Cyclic Homology in Non-Commutative Geometry | 28 | Potier J.L. — Lectures on vector bundles | 22 | Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry | 116 | Kulikov V. — Mixed Hodge Structures and Singularities | (I.3.2.3) 11 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 161, 199, 226 | Voisin C. — Hodge theory and complex algebraic geometry 1 | 117, 142 | Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 325, 340, 426, 490 | Kirwan F. — An Introduction to Intersection Homology Theory | §1.2 | Moerdijk I., Mrcun J. — Introduction to Foliations and Lie Groupoids | 2 | Husemoller D. — Fibre Bundles | 281 | Lang S. — Diophantine Geometry | 153—160 | Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 569 | Dupont J.L. — Curvature and Characteristic Classes | 4 | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 590 | Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 565 | Morita S. — Geometry of differential forms | 111 | Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 52, 65, 66, 68 | Morita Sh. — Geometry of Differential Forms | 111 | Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 31 | Luck W. — Transformation Groups and Algebraic K-Theory | 375 | Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations | 370 | Granas A., Dugundji J. — Fixed Point Theory | 362 | Audin M. — Torus Actions on Symplectic Manifolds | 175, 184, 217 | Libermann P., Marle Ch.M. — Symplectic Geometry and Analytical Mechanics | 435 | Bertlmann R.A. — Anomalies in Quantum Field Theory | 67—73 | Anderson G.A., Granas A. — Fixed Point Theory | 362 | Nash C. — Differential Topology and Quantum Field Theory | 3, 41, 280, 283, 323, 326, 333 | Moerdijk I., Reyes G.E. — Models for smooth infinitesimal analysis | 137 | Lee J.M. — Differential and physical geometry | 211 | Browder A. — Mathematical Analysis: An Introduction | 291 | Morita S. — Geometry of Differential Forms | 111 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 223 | Moore J.D. — Lectures on Seiberg-Witten Invariants | 16 | Carroll R.W. — Mathematical physics | 366 | Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 263, 327 | Zeidler E. — Oxford User's Guide to Mathematics | 306 | Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 289, 298 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 223 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 43, 80, 107, 248, 287 | Markl M., Shnider S., Stasheff J. — Operads in Algebra, Topology and Physics | 260 | Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 111 |
|
|