Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mumford D. — Algebraic Geometry I complex projective varieties
Mumford D. — Algebraic Geometry I complex projective varieties



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebraic Geometry I complex projective varieties

Автор: Mumford D.

Язык: en

Рубрика: Математика/Алгебра/Алгебраическая геометрия/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1976

Количество страниц: 98

Добавлена в каталог: 12.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Abelian varieties      155
Affine coordinate ring      3
Affine variety      1
Albanese's method for resolution      129
Algebraic structure on complex manifold      68
Algebraic subset of $a^n$      1
Algebraic subset of $c^n$      21
Analytic nullstellensatz      116
Analytic set      59 116
Arithmetic genus      115 132
Base points      97
Betti numbers of a curve      131
Betti numbers of projective space      93
Bezout's theorem      80
Birational maps      29 31 127 168
Bitangent planes      134
Blow-up      32 73.
Blow-up defined by linear system      101 172 179
Branch locus      109 142
Branches of singularities      117 128 162
Canonical curves      148
Canonical divisor      107 141 148
Canonical ring      108
Cauchy — Riemann equations      63 95
Chans on $p^n$      21
Charts in general      10
Charts on blow-up      158
Chows Theorem      61 95
Circular points at x      24
Complete linear system      97 103 145
Complex manifold      10 60 43
Conies      23 79
Connectedness of varieties      52 68
Constructive set      37
Correspondences      29;see also Rational Birational
Counting constants, principle of      50 173
Cubic curves      131 149 179
Cubic curves, group law on      152 154
Cubic surfaces      173
Cubic varieties      80
De Rham cohomology      91
Degree of a cycle      55 71 80 84
Degree of a map      46 53
Degree of a variety      26 70 89
Degree: effect of a projection on      76 124 130
Differenlials - regular algebraic      105 145 147 150
Differentials - analytic      105 142
Differentials - C      104
Differentials - rational      106
Dimension of a variety      6 24
Dimension of an analytic set      60
Dimension of an intersection      56
Dimension of fibres of a map      45
Divisor of zeroes and poles      18 25 96
Dominating map      40
Dominating models      150
Elimination theory      33
Elimination theory - analytic case      63
Elliptic curves      131 149
Elliptic integral      151
Exceptional divisor      49 156
Function field      4 24 127 156
Fundamental class      92
Fundamental points      50 156
General projections      132
Generic point      2
Genus of a curve      145
Geometric genus      108
Grassmannian      174
Hermitian metric      86
hessian      136 149
Hilbert polynomial      110 129 137 146
Hilbert — Samuel polynomial      120
Hilbert's Nullstellensatz      3
Hirzebruch — Riemann — Roch theorem      131
Holomorphicmaps      60 67 118 152
Homogeneous coordinate ring      22 97 102 138
Homogeneous coordinates      20
Homogeneous ideal      21
Homogenization      23
Homology groups      90 93 131 151
Hurwitz formula      142
Hyperelliptic curves      148
Hyperplane at x      20
Hyperplane sections, "good"      113
Hypersurface in $\mathbb{C}^n$      2
Hypersurface in $\mathbb{P}^n$      25
Implicit function theorem      8 10 53
Infinitely near points      171
Inflexion, points of      136. 154
Intersection cycle      71 84
Intersection multiplicity      71 84 122
Irreducible algebraic set      3 68
Irreducible analytic set      59 117
Jacobian variety of a curve      155
Kaehler metric      86
Krull's theorem      8 15 138
Lefschetz's theorem      95
Linear equivalence of divisors      96 155
Linear system defined by rational map      98 167
Linear system of hypersurfaces      97 102 172 179
Linear systems      97
Local algebraic coordinates      14
Local analytic coordinates      10
Local equation of a divisor      17 161
Local ring of a point      4 24
Minimal model      172
Mittag — Loeffler problem      144
Model of a function field      127 156 170
Multiplicity of a ramification point of a map      45 118 121
Multiplicity of a singular point      75 123 161
Multiplicity of an intersection      71 122
Multiplicity-formula of Samuel      121
Multiplicity-formula of Weil      118
Noether normalization      36 102
Nullstellensatz      3
Nullstellensatz, analytic case      116
Openness principle      43 67
Order of vanishing      18 97
Ordinary double point      13 55 132 165
Orientation      87
Periods of a differential      91 151
Picard group      19 25 155
Pinch point      132
Plucker coordinates      173
Plurigenera      108
Principal divisor      18 96
Principle of counting constants      50
Projections      32 82
Projections - effect on degree      72 76
Projections - general      38 132
Projections of singular curves      130
Projective space      20
Projective transformations      21
Projective varieties, products of      27 80
Projective variety      22
Projectivized tangent cone      74 128
Proper transform of a curve on a blow-up      161
Quadric in $\mathbb{P}^5$      173
Quadric surfaces      29 172
Quadrics      24
Quadrics, projections of      78
Rational curves      131 141
Rational map defined by linear system      98 101
Rational maps      29 166
Regular maps      32 40
Residues      142
Resolution of singularities      32 127 160
Resultants      34 64
Retraction      83
Ricci curvature      109
Riemann extension theorem      62
Riemann — Roch for curves      145
Ruled surface      172
Samuel's multiplicity formula      121
Sard's lemma      42
Schubert calculus      116
Segre embedding      27 80
Singular homology      90
Singular point      6
Singular point - cusp      13 165
Singular point -node      55 132 165
Singularities of an analytic set      60
Smooth map      41
Smooth point      6 24
Specialization principle      53
Stereographic projection      12
Stoke's theorem      91 143
Tangent cone      74
Tangent space      3 24
Tnsecants      134
Topological genus of a curve      131
Topotogically unibranch      43 117
Transversal intersection      70 81
Triangulations      91 141
Unique factorization of affine rings      17
Unique factorization of local rings      15
Varieiy in $\mathbb{P}^n$      22
Variety in $\mathbb{C}^n$      1
Veronese surface      100
Volume of a variety      89
Weierstrass $\wp$-function      152
Weierstrass normal form      150
Weierstrass preparation theorem      62 161
Weils multiplicity formula      118
Wirtinger's inequality      88
Zariski lopology on $\mathbb{C}^n$      1
Zariski topology - comparison with classical topology      39 68
Zariski topology on $\mathbb{P}^n$      22
Zariski's connectedness theorem      52
Zariski's main theorem      48 52
•analytic set      60
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте