|
|
Результат поиска |
Поиск книг, содержащих: Elliptic operator
Книга | Страницы для поиска | Nagel R. — One-parameter semigroups of positive operators | 185, 190, 260, 305, 312 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 323.H | Gilbert J., Murray M. — Clifford Algebras and Dirac Operators in Harmonic Analysis | 205 | Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 54, 421 | Joyce D.D. — Compact Manifolds with Special Holonomy | 7—19 | Winkler G. — Stochastic Integrals | 12.2.1f | Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 310 | Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 263, 276, 327, 400 | Machel A.N., Wang K. — Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings | 369 see also strongly elliptic | Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 233 | Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 7—18 | Higson N., Roe J. — Analytic K-Homology | 279 | Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 104 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 449 | Krantz S.K. — Partial Differential Equations and Complex Analysis | 23, 79, 191 | Besse A.L. — Einstein Manifolds | 123, 327, 462 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $112^2$, 346 | Lifanov I.K., Poltavskii L.N., Vainikko G.M. — Hypersingular integral equations and their applications | 81 | Rudin W. — Functional analysis | 198 | Ito K. — Encyclopedic Dictionary of Mathematics | 323.H | Kato G., Struppa D.C. — Fundamentals of algebraic microlocal analysis | 30, 100, 101, 248 | Chan T., Shen J. — Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods | 288 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 12.1, 12.16, 12.30, 14.8 | Schechter M. — Spectra of partial differential operators | 55 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 112 | Roitberg Y. — Elliptic Boundary Value Problems In The Spaces Of Distributions | 85 | Phillips N.Ch. — Equivariant K-Theory and Freeness of Group Actions on C*-Algebras | 58, 68, 109, 112, 167, 179 | Doukhan P. — Mixing. Properties and examples | 115 | Sperb R.P. — Mathematics in Science and Engineering. Volume 157. Maximum principles and their applications | 16 | Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 180 | Hormander L. — The Analysis of Linear Partial Differential Operators IV | 87, 27 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 397 | Esposito G. — Dirac Operators and Spectral Geometry | 26 | Müller R. — Differential harnack inequalities and the ricci flow | 28 | Kashiwara M., Kawai T., Kimura T. — Foundations of Algebraic Analysis | 144 | Joyce D.D. — Compact manifolds with special holonomy | 7—19 | Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups | 5.6.2 | Pier J.-P. — Mathematical Analysis during the 20th Century | 242, 311 | Sperb R.P. — Maximum principles and their applications | 16 | Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 337 | Rempel S., Schulze B.-W. — Index Theory of Elliptic Boundary Problems | 76, 194, 360 | Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 7—18 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 397 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 140, 369, 381 | Rosenberg S. — The Laplacian on a Riemannian manifold | 139 |
|
|