|
|
Результат поиска |
Поиск книг, содержащих: Curvature, Ricci
Книга | Страницы для поиска | Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 34, 130 | Kobayashi S. — Differential geometry of complex vector bundles | 26 | Goldberg S.I. — Curvature and homology | 38 | Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 124 | Gromov M. — Metric Structures for Riemannian and Non-Riemannian Spaces | A., D. | Joyce D.D. — Compact Manifolds with Special Holonomy | 44 | Chavel I. — Isoperimetric Inequalities : Differential Geometric and Analytic Perspectives | 122 | Terng Ch. — Critical Point Theory and Submanifold Geometry | 12 | Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 42 | Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 53, 262 | Petersen P. — Riemannian Geometry | 38, 265, 324 | Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 200 | Berard P.H. — Spectral Geometry | 32, 40 | Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 7, 140 | Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | 471 | O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 87—89 | O'Neill B. — The Geometry of Kerr Black Holes | 18 | Oprea J. — Differential Geometry and Its Applications | 420 | Bishop R.L., Crittenden R.J. — Geometry of manifolds | 253 | Morrow J., Kodaira K. — Complex Manifolds | 118 | Joyce D.D. — Compact manifolds with special holonomy | 44 | Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 53, 262 | Радиорелейная станция типа Р-414. Техническое описание. Книга вторая | 118 | Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 109 | Greene R.E., Wu H. — Function Theory on Manifolds Which Possess a Pole | 5, 129 | Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 42 | Rosenberg S. — The Laplacian on a Riemannian manifold | 60, 74 |
|
|