| Книга | Страницы для поиска |
| Rudin W. — Fourier Analysis on Groups | 248 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 95 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 425.J |
| Seebach J.A., Steen L.A. — Counterexamples in Topology | 4 |
| Hajime Sato — Algebraic Topology: An Intuitive Approach | 108 |
| Conway J.B. — Functions of One Complex Variable | 225 |
| Springer G. — Introduction to Riemann Surfaces | 46 |
| Lee J.M. — Introduction to Topological Manifolds | 40 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 114 |
| Mendelson B. — Introduction to Topology | 109 |
| Halmos P.R. — Measure Theory | 3 |
| Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 5 |
| Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 27 |
| James I.M. — Topological and Uniform Spaces | 44—46, 51—54, 65, 67, 103, 139 |
| Dugunji J. — Topology | 77, 79 |
| Lange K. — Optimization | 30 |
| Morris S.A. — Topology without tears | 58 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 10 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 10 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 95 |
| Wilansky A. — Modern Methods in Topological Vector Spaces | 49,95,136,217 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 259 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 425.J |
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 8 |
| Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 6 |
| Hu S.-T. — Elements of general topology | 31 |
| Tamura I. — Topology of lie groups, I and II | 35 |
| Alling N.L. — Foundations of Analysis over Surreal Number Fields | 1.11 |
| Simmons G.F. — Introduction to topology and modern analysis | 93 |
| Ash R.B. — Real Variables with Basic Metric Space Topology | 142 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 31 |
| Valentine F.A. — Convex Sets | 120 |
| Hu S.T. — Introduction to general topology | 31 |
| Aliprantis C. — Principles of real analysis | 58 |
| Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 84 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 20 |
| Dembo A., Zeitouni O. — Large deviations techniques and applications | 308 |
| Springer G. — Introduction to Riemann Surfaces | 46 |
| Loomis L.H. — An introduction to abstract harmonic analysis | 4 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 60 |
| Bachman G. — Elements of Abstract Harmonic Analysis | 78 |
| Hsiung C.-C. — A first course in differential geometry | 3 |
| James I.M. (ed.) — Topological and Uniform Spaces | 44—46, 51—54, 65, 67, 103, 139 |
| Bertsekas D.P., Shreve S.E. — Stochastic Optimal Control: The Discrete-Time Case | 104 |
| De Barra G — Measure theory and integration | 18 |
| Cheney W. — Analysis for Applied Mathematics | 363 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 20 |