Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 499 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 195 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 203 |
Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in FORTRAN77 | 780 |
Evans L.C. — Partial Differential Equations | 220, 641, 643 |
Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach | 14.A |
Kuttler K. — Introduction to linear algebra for mathematicians | 228 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 284, 398 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 61, 69, 70, 78, 104, 105, 114 |
Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 9, 108 |
Vaeth M. — Volterra and integral equations of vector functions | 34, 131 |
Benson D. — Mathematics and music | 401 |
Drazin P. — Introduction to Hydrodynamic Stability | 80, 89 |
Douglas R.G. — Banach algebra techniques in operator theory | 131 |
Birman M.S., Solomyak M.Z. — Spectral Theory of Self-Adjoint Operators in Hilbert Space | 89 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 229 |
Appell J.M., Kalitvin A.S., Zabrejko P.P. — Partial Integral Operators and Integro-Differential Equations | 165, 462 |
Edwards H. — Advanced Calculus: A Differential Forms Approach | 126 (Ex. 12) |
Halmos P.R. — Hilbert Space Problem Book | 179, 184, 187 |
Arveson W. — A Short Course on Spectral Theory | 87 |
Monk P. — Finite Element Methods for Maxwell's Equations | 24 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 834 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 40, 45 |
Strauss W.A. — Partial Differential Equations: An Introduction | 301 |
Gohberg I., Goldberg S. — Basic Operator Theory | 245 |
Agarwal R.P., O'Regan D. — Fixed Point Theory and Applications | 72 |
Goldberg M.A. (ed.) — Solution Methods for Integral Equations | 123, 125, 267, 273—274, 276—278, 281, 309, 315 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 203 |
Besse A.L. — Einstein Manifolds | 464 |
Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 5—7, 218, 220, 294 |
Rudin W. — Functional analysis | 107 |
Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 10, 57, 58, 386, 390, 391, 409, 427, 433, 440, 447, 460, 482 |
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 24 |
Stakgold I. — Green's Functions and Boundary Value Problems | see "Alternative theorems" |
Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 237 |
Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 45 |
Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 259 |
Radjavi H., Rosenthal P. — Simultaneous Triangularization | 135 |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 40, 45 |
Granas A., Dugundji J. — Fixed Point Theory | 130, 135 |
Kuttler K. — Calculus, Applications and Theory | 421 |
Nicolis G., Prigogine I. — Self-organization in nonequilibrium systems | 108, 143 |
Olver P.J., Shakiban C. — Applied linear. algebra | 273, 303, 306, 319, 365, 507, 592, 612 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 415 |
Bogaevski V.T., Povzner A. — Algebraic Methods In Nonlinear Perturbation Theory | 99 |
Conway J.B. — A Course in Functional Analysis | 221, 361 |
Anderson G.A., Granas A. — Fixed Point Theory | 130, 135 |
Smithies F., Hall P. (ed.) — INTEGRAL EQUATIONS (No. 49) | 52 |
Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics | 43 |
Press W.H., Teukolsky S.A., Vetterling W.T. — Numerical recipes in Fortran 90 | 780 |
Kreyszig E. — Introductory functional analysis with applications | 451 |
Shilov G.E. — An introduction to the theory of linear spaces | 288—298 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 62 |
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 169 |
Dym H., McKean H.P. — Fourier Series and Integrals | 60 |
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 67—68 |
Murdock J.A. — Perturbations: Theory and Methods (Classics in Applied Mathematics) | 223 |
Douglas R.G. — Banach algebra techniques in operator theory | 131 |
Stakgold I. — Green's functions and boundary value problems | see Alternative theorems |
Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 66 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | (609—610) |
Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 14, 20 |
Schmid P.J., Henningson D.S. — Stability and Transition in Shear Flows | 163, 170, 304 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 237, 245, 249, 284, 287 |
Zeidler E. — Oxford User's Guide to Mathematics | 460, 613 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 80 |
John F. — Partial Differential Equations | 195 |
Rempel S., Schulze B.-W. — Index Theory of Elliptic Boundary Problems | 237 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 60 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | 609—610 |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 378 |
Cercignani C. — Rarefied Gas Dynamics | 52, 177 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 330 |
Bangerth W., Rannacher R. — Adaptive Finite Element Methods for Differential Equations | 92 |
Cheney W. — Analysis for Applied Mathematics | 351ff |
Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 293 |
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 169 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 62 |
D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 99 |
Andrea Toselli, Olof Widlund — Springer Series in Computational Mathematics | 364 |