| 
    
	    
	    |  |  | 
                
                    | Результат поиска |  
                    | Поиск книг, содержащих: Function, characteristic
 
 | Книга | Страницы для поиска |  | Bartle R.G. — The Elements of Integration | 3, 9 |  | Apostol T.M. — Calculus (vol 1) | 64 (Exercise 8) |  | Rudin W. — Principles of Mathematical Analysis | 313 |  | Hamilton W.R. — The collected mathematical papers. Volume 1: geometrical optics | See Characteristic function |  | Baker A. — Algebra and Number Theory | 58 |  | Wedderburn J.H.M. — Lectures on Matrices | 23, 32 |  | Nikolskii N.K. — Treatise on the Shift Operator: Spectral Function Theory | 5, 18, 75 |  | Graves L.M. — Theory of Functions of Real Variables | 60, 181 |  | Steen S.W.P. — Mathematical Logic with Special Reference to the Natural Numbers | 266 |  | Chavel I. — Isoperimetric Inequalities : Differential Geometric and Analytic Perspectives | 13 |  | Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 38 |  | Appell J.M., Kalitvin A.S., Zabrejko P.P. — Partial Integral Operators and Integro-Differential Equations | 59, 280 |  | Hagen R., Roch S., Silbermann B. — C-Algebras and Numerical Analysis | 167 |  | Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 20, 118, 120, 224, 225, 254 |  | Wolkenhauser O. — Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis | 134 |  | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 1046, 1066 |  | Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 59, 156 |  | Goldblatt R. — Topoi | 79 |  | Ericson T. — Codes on Euclidean Spheres | 227 |  | Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 57 |  | Humphreys J.F., Prest M.Y. — Numbers, Groups and Codes | 103 |  | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 34, 428 |  | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 34 |  | Sierpinski W. — Cardinal and ordinal numbers | 22 |  | Royden H.L. — Real Analysis | 68, 75 |  | Li M., Vitanyi P. — An introduction to Kolmogorov complexity and its applications | 7, 32, 33, 339, 495 |  | Royden H.L. — Real Analysis | 68, 75 |  | Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 31 |  | Haas A.E. — Introduction to theoretical physics, Vol. 1 and 2 | 312 |  | von Neumann John, Morgenstern Oscar — Theory of games and economic behavior | 238 ff. |  | Hu S.-T. — Elements of real analysis | 11, 88 |  | Hu S.-T. — Elements of general topology | 10 |  | Kreyszig E. — Advanced engineering mathematics | 542, 574 |  | Berge C. — The Theory of Graphs | p. 47 |  | Miller K.S. — Complex stochastic processes | 12, 38, 82, 83 |  | Browder A. — Mathematical Analysis: An Introduction | 225 |  | Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 10 |  | Messiah A. — Quantum mechanics. Volume 1 | 177, 139, 296 |  | Klauder J.R., Sudarshan E.C.G. — Fundamentals of Quantum Optics | 19 |  | Hu S.T. — Introduction to general topology | 10 |  | Klaas  G., Leedham-Green C.R., Plesken W. — Linear Pro-p-Groups  of Finite Width | III.5.5 |  | Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 21 |  | Runst T. — Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations | 49 |  | Aliprantis C. — Principles of real analysis | 126 |  | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 1 |  | Natanson I.P. — Theory of Functions of a Real Variable. Volume II | 152 |  | McShane E.J., Botts T.A. — Real Analysis | 77 |  | Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 13 |  | Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | (8) |  | Howes N.R — Modern Analysis and Topology | 222 |  | Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 55 |  | De Barra G — Measure theory and integration | 22 |  | Elliott Mendelson — Introduction to mathematical logic | 137 |  | Steen S. — Mathematical Logic with Special Reference to the Natural Numbers | 266 |  | Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | 3 |  | Gill A. — Applied Algebra for the Computer Sciences | 68 |  | Rautenberg W. — A Concise Introduction to Mathematical Logic (Universitext) | 169 |  | Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 21 |  | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 1 |  | Hogg R.V., Craig A.T. — Introduction to Mathematical Statistics | 64 | 
 |  |  
    |  |  |  |  |