Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Berge C. — The Theory of Graphs
Berge C. — The Theory of Graphs



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: The Theory of Graphs

Автор: Berge C.

Аннотация:

An extraordinary variety of disciplines rely on graphs to convey their fundamentals as well as their finer points. With this concise and well-written text, anyone with a firm grasp of general mathematics can follow the development of graph theory and learn to apply its principles in methods both formal and abstract. The work of a distinguished mathematician, this text uses practical examples to illustrate the theory's broad range of applications, from the behavioral sciences, information theory, cybernetics, and other areas, to mathematical disciplines such as set and matrix theory.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2001

Количество страниц: 247

Добавлена в каталог: 09.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$R$, space of real numbers      p. 2
Ancestor      p. 11
Antinode      p. 123
Arborescence      p. 13
ARC      p. 6
Articulation, point      p. 196
Articulation, set      p. 203
Associated number of a vertex      p. 119
Basis, of a graph      p. 13
Basis, of a vector spaoe      p. 28
Bound (of a set), upper, lower      p. 13
Branch      p. 123
Capacity, in a network      p. 71
Capacity, of a graph      p. 39
Centre      p. 119
Chain, $\mu$, simple, composite      p. 9
Chain, alter- nating      p. 171
Chain, Eulerian      p. 166
Chain, Hamiltonian      p. 187
Circuit, $\mu$, elementary      p. 7
Circuit, Eulerian      p.167
Circuit, Hamiltonian      p. 107
CLIQUE      p. 36
Closure, transitive      p. 4
Coefficient, of external stability      p. 40
Coefficient, of internal stability      p. 36
Component      p. 9
Cover, of a simple graph      p. 77
Cover, of any graph      p. 177
Cut      p. 74
Cycle, Eulerian      p. 166
Cycle, Hamiltonian      p. 187
Cycle, independent      p. 28
Cycle, simple, composite, elementary      p. 9
Deficiency      p. 96
Demi-degree, outward, inward      p. 86
Descendant      p. 11
Diameter      p. 126
Distance between two vertices      p. 196
Distance between two vertices, directed      p. 119
EDGE      p. 8
Equilibrium      p. 60
Equivalence, $\equiv$      p. 3
Equivalence, associated with a graph      p. 11
Factor      p. 111
Flow      p. 71
Flow, complete      p. 76
Function, characteristic      p. 47
Function, composite      p. 4
Function, Grundy function $g(x)$      p. 22
Function, ordinal function $o(x)$      p. 21
Function, preference      p. 68
Function, preserving      p. 39
Function, single-valued, multivalued      p. 3
Game      p. 62
Game, partial      p. 68
Graph, $G = (X, U)$      p. 6
Graph, $G = (X, \Gamma)$      p. 6
Graph, $p$-chromatic      p. 30
Graph, $s$-graph      p. 27
Graph, $\Gamma$-finite, $\Gamma^{-1}$-finite, $\Gamma$-bounded      p. 16
Graph, antisymmetric, complete      p. 8
Graph, biconnected      p. 198
Graph, connected      p. 9
Graph, dual      p. 214
Graph, finite      p. 16
Graph, inductive      p. 13
Graph, locally finite      p. 16
Graph, partial      p. 6
Graph, planar      p. 30
Graph, progressively bounded, progressively finite      p. 16
Graph, pseudo- symmetric      p. 167
Graph, regressively bounded, regressively finite      p. 17
Graph, simple      p. 77
Graph, strongly connected, symmetric      p. 8
Graph, total      p. 12
Graph, totally inductive      p. 14
Graph, transitive      p. 12.
Image      p. 4
Index, ohromatic      p. 30
Intersection      p. 2
Inverse      p. 4
Kernel      p. 46
Lattice property      p. 13
Loop      p. 7
Majorant      p. 11
Matching, W, of a simple graph      p. 92
Matching, W, of any graph      p. 178.
Matrix, associated with a graph      p. 130
Matrix, cyclomatic      p. 149
Matrix, incidence matrix of the arcs, incidence matrix of the edges, the unimodular property      p. 141
Maximum      p. 12
Minimum      p. 12
Minorant      p. 12
Multiplication, logical      p. 42
Network      p. 71
Node      p. 123
Number, chromatic $\gamma(G)$      p. 30
Number, cohesion $\chi(G)$, connection $\omega(G)$      p. 203
Number, cyclo- matic $\nu(G)$      p. 27
Number, ordinal, ordinal limit      p. 20
Order of a vertex      p. 21
Partial order      p. 12
Partition (in the sense of the theory of sets)      p. 3
Path, $\mu$, simple, composite, elementary, length      p. 7
Path, Hamiltonian      p. 107
Peripheral point      p. 119
Piece      p. 201
Product, Cartesian $\times$      p. 2
Product, of graphs      p. 23
RADIUS      p. 120
Roeette      p. 123
Semi-factor      p. 187
Set      p. 1
Set, externally stable      p. 40
Set, internally stable      p. 35
Shrinkage      p. 123
Sink      p. 71
Source      p. 71
Strategy      p. 60
Strategy, mixed      p. 228
Subgame      p. 68
Subgraph      p. 6
Subgraph, partial      p. 6
Sum, digital      p. 24
Sum, logical      p. 42
Sum, of graphs      p. 23
Support, isolated, pendant      p. 162
Support, of a simple graph      p. 90
Support, of any graph      p. 184
Track      p. 126
TRANSFER      p. 89
TREE      p. 162
union      p. 2
Vertex      p. 6
Weak ordering      p. 11
Weak ordering, total      p. 12
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2020
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте