|
|
Результат поиска |
Поиск книг, содержащих: Stevin, Simon
Книга | Страницы для поиска | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 360 | Seltman M. (ed.), Goulding R. (ed.) — Thomas Harriot's Artis Analyticae PRAXIS: An English Translation with Commentary | 7, 21 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 250—254, 776 | Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 10 | Shiffer M.M., Bowden L. — Role of Mathematics in Science | 1,20, 21, 23, 24,35 | Bashmakova I.G. — Diophantus and Diophantine Equations | 50, 85 | Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 198, 424 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 250—254, 776 | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 3:1866 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | [99], 6, 49, 69, 97, 137, 138, 263, 330, 356, 405—407 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 250—254, 776 | von zur Gathen J., Gerhard J. — Modern computer algebra | 39, 724 | von zur Gathen J., Gerhard J. — Modern computer algebra | 39, 724 | Truesdell C. — Essays in the History of Mechanics | 21, 110, 153, 155—156, 196—200, 211—212, 214, 307 | Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 182, 405 | Tignol J.-P. — Galois' Theory of Algebraic Equations | 1, 26-28, 40 | Dickson L.E. — History of the Theory of Numbers, Volume ll: Diophantine Analysis | 516 [355] | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 175—176 | Struik D.J. — A concise history of mathematics. Volume 2 | 55, 110, 127, 162, 205 | Heath Th.L. — Diophantus of Alexandria. A Study in the History of Greek Algebra | 29, 30 n. | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 3 | III. 8 | Ore O. — Number theory and its history | 24, 313—315, 325 | Katz V.J. — A History of Mathematics: An Introduction | 375—378, 446 | Flegg G., Hay C., Moss B. — Nicolas Chuquet, Renaissance Mathematician | 356—358 | Zeidler E. — Oxford User's Guide to Mathematics | 59 | Ifrah G., Bellos D. — The Universal History of Numbers: From Prehistory to the Invention of the Computer | 595 | Kline M. — Mathematics for the Nonmathematician | 284 | Kline M. — Mathematical thought from ancient to modern times | 250, 254, 776 | Brezinski C. — History of Continued Fractions and Padé Approximants | 27, 29, 446, 467 | Schiffer M.M. — The role of mathematics in science | 1, 20, 21, 23, 24, 35 | Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 266—269, 283 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 12 |
|
|