|
|
Результат поиска |
Поиск книг, содержащих: Bifurcation diagram
Книга | Страницы для поиска | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 176 | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 192 | Hertling C. — Frobenius manifolds and moduli spaces for singularities | 36, 161 | Goldstein H., Poole C., Safko J. — Classical mechanics | 506, 508, 513, 515 | Murdock J. — Perturbations: Theory and Methods | 18 | Drazin P. — Introduction to Hydrodynamic Stability | 12 | Peters E.E. — Fractal Market Analysis: Applying Chaos Theory to Investment and Economics | 179—180 | Gonzalez-Miranda J.M. — Synchronization and Control of Chaos: An Introduction for Scientists and Engineers | 32, 140 | Smith L.A. — Chaos: A Very Short Introduction | 60—62 | Arnold V.I. — Theory of Singularities and Its Applications | 8, 9 | Ott E. — Chaos in dynamical systems | 39 | Devaney R.L. — An introduction to chaotic dynamical systems | 82 | Antman S.S. — Nonlinear Problems of Elasticity | 128—131 | Hale J.K., Kocak H. — Dynamics and Bifurcations | 28 | Holden A.V. — Chaos | 224 | Hilborn R.C. — Chaos and nonlinear dynamics | 11, 15—18, 24—25, 107—108 | Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 146 | Nicolis G., Prigogine I. — Self-organization in nonequilibrium systems | 111, 113, 121, 124 | Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 174, 183, 248, 318 | Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 386, 419 | Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 105, 106 | Mullin T. — The nature of chaos | 12, 137 | Blanchard P., Devaney R.L. — Differential Equations | 100 | Roads С.(ed.) — Musical signal processing | 217 | Akhmediev N., Ankiewicz A. — Dissipative Solitons | 83, 323 | Krizek M., Somer L., Luca F. — 17 Lectures on Fermat Numbers: From Number Theory to Geometry | 184 | Guckenheimer J., Holmes Ph. — Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Vol. 42 | 105—106, 118—120 | Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 11 | Murdock J.A. — Perturbations: Theory and Methods (Classics in Applied Mathematics) | 18 | Misra J.C. — Biomathematics: Modelling and Simulation | 425-427 | Argyris J., Faust G., Haase M. — An Exploration of Chaos | 356, 565, 602, 665 | Higham D.J., Higham N.J. — MATLAB guide | 301 | Addison P.S. — Fractals and chaos | 98 | Ascher U., Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 212 | Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 212 | Falconer K. — Fractal geometry: mathematical foundations and applications | 192 | Logan J. — Applied Mathematics: A Contemporary Approach | 358 |
|
|