|
|
 |
| Результат поиска |
Поиск книг, содержащих: Bernoulli, Johann
| Книга | Страницы для поиска | | Apostol T.M. — Calculus (vol 1) | 235, 292, 305, 331 | | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 38 46.A 93.H 163.B 165.A | | Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 308 | | Kisacanin B. — Mathematical problems and proofs. Combinatorics, Number theory, and Geometry | 43n, 202 | | Anderson J.D. — Modern Compressible Flow: With Historical Perspective | 202 | | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 23 | | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 562 | | Kline M. — Mathematics in Western Culture | 241, 253 | | Estep D.J. — Practical Analysis in One Variable | 246, 436, 497, 539 | | Buzaglo M. — Logic of Concept Expansion | 13—14, 60 | | Parshin A.N., Shafarevich I.R. — Algebraic Geometry III : Complex Algebraic Varieties. Algebraic Curves and Their Jacobians | 3 | | Lozansky E., Rousseau C. — Winning Solutions | 35 | | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 1:486, 2:973, 6:4095 | | Burn R.P. — Numbers and Functions: Steps to Analysis | 8H, 9H | | Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 148 | | Greenberg M.D. — Advanced engineering mathematics | 32 | | Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 235, 292, 305, 331 | | Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 209, 210, 211, 483, 484 | | Carrol B.W., Ostlie D.A. — An introduction to modern astrophysics | 30 | | Weyl H. — Philosophy of mathematics and natural science | 44 | | Bonar D.D., Khoury M.J. — Real Infinite Series | 70 | | Gordon H. — Discrete Probability | 116, 117, 137, 194, 195 | | Hellman H. — Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever | 3, 72—75 | | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 280n., 282 | | Whittaker E. — A history of the theories of aether and electricity (Vol 2. The modern theories) | 144 | | Struik D.J. — A concise history of mathematics. Volume 2 | 157, 158, 163—167, 169, 202 | | Simmons G.F. — Differential Equations with Applications and Historical Notes | 25, 31, 108, 113, 353 | | Browder A. — Mathematical Analysis: An Introduction | 96 | | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 279, 286, 302 | | Arnol'd V.I. — Hyugens and Barrow, Newton and Hooke | 8, 31, 50 | | Lemons D.S. — Perfect form: Variational principles, methods, and applications in elementary physics | 23 | | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 23 | | Klein F. — Elementary Mathematics From an Advanced Standpoint: Arithmetic, Algebra, Analysis | 200, 205, 216 | | Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 10, 58, 63 | | Zeidler E. — Oxford User's Guide to Mathematics | 35, 1187 | | Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 302 | | Greenberg M. — Advanced engineering mathematics | 32 | | Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 139, 172, 174, 197—198, 210—212, 214—215, 217, 219—221, 228, 233, 240—245, 249 | | Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 281 | | Zorich V.A., Cooke R. — Mathematical analysis II | 92 | | Zorich V. — Mathematical Analysis | 92 | | Mach E. — The Principles of Physical Optics: An Historical and Philosophical Treatment | 35, 57, 274 | | Wilson R. — Mathematical conversations: selections from The mathematical intelligencer | 176, 280—281 | | Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 302 | | Arnol'd V.I. — Huygens and Barrow, Newton and Hooke: Pioneers in Mathematical Analysis and Catastrophe Theory from Evolvents to Quasicrystals | 8, 31, 50 | | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 202, 205—206 | | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 46, 124 |
|
|