| Книга | Страницы для поиска |
| Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 67, 469 |
| Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 551 |
| Zinn-Justin J. — Quantum field theory and critical phenomena | 507 |
| Eisenhart L.P. — An introduction to differential geometry with use of the tensor calculus | 101, 103, 120—122, 150, 153 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 288 |
| Goldstein H., Poole C., Safko J. — Classical mechanics | 326, 327 |
| Papapetrou A. — Lectures on general relativity | 40 |
| Torretti R. — Relativity and Geometry | 145, 189, 279, 280, 313 note 8, 318 note 24, note 26 |
| Terng Ch. — Critical Point Theory and Submanifold Geometry | 11 |
| O'Donnel P. — Introduction to 2-Spinors in General Relativity | 47, 87, 91, 93, 95, 155 |
| Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | see Riemann curvature tensor |
| Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 2 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | see “Curvature tensor”, “Riemann curvature tensor” |
| Frolov V.P., Novikov I.D. — Black Hole Physics: Basic Concepts and New Developments | 53, 623 |
| Poisson E. — A relativists toolkit | see “Curvature tensors, Riemann” |
| Stephani H. — Relativity: an introduction to special and general relativity | 138 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 240 |
| De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 104 |
| Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see “Curvature”, “Riemann” |
| Kilmister C.W. — General theory of relativity | 72, 155, 230 |
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 168—173, 182, 197—198, 208, 214 |
| Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 57 f., 84, 89, 99 |
| Visser M. — Lorentzian wormholes. From Einstein to Hawking | 11, 145, 146, 312, 314, 315, 317, 349 |
| Shore S.N. — The Tapestry of Modern Astrophysics | 87—88 |
| D'Inverno R. — Introducing Einstein's Relatvity | 77, 78, 80, 81, 86, 88, 104, 108, 119, 133, 135, 141, 142, 145, 171, 179, 275, 280, 282, 288, 299-301, 329 (see also curvature tensor) |
| Tsvelik A.M. — Quantum field theory in condensed matter physics | 76 |
| Volovik G. — Artificial black holes | 5, 6, 160, 384 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 463—465, 484 |
| Rosenfeld B. — Geometry of Lie Groups | 16 |
| Hatfield B. — Quantum field theory of point particles and strings | 556 |
| Woodhouse N.M.J. — Geometric quantization | 263 |
| Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 85 |
| Whittaker E. — A history of the theories of aether and electricity (Vol 2. The modern theories) | 166 |
| Padmanabhan T. — Cosmology and Astrophysics through Problems | 71 |
| Landau L.D., Lifshitz E.M. — The classical theory of fields | 279 |
| Bona C., Palenzuela-Luque C. — Elements of Numerical Relativity: From Einstein's Equations to Black Hole Simulations (Lecture Notes in Physics) | 5 |
| Zakharov V.D. — Gravitational waves in Einstein's theory | see Tensor, Riemann |
| Riley, Hobson — Mathematical Methods for Physics and Engineering | 830 |
| Synge J.L. — Relativity: The general theory | 15, 16, 419 |
| Tsvelik A.M. — Quantum field theory in condensed matter physics | 76 |
| Esposito G. — Dirac Operators and Spectral Geometry | 6 |
| Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 487 |
| Schutz B.F. — A first course in general relativity | 147, 175 |
| Anderson J.L. — Principles of Relativity Physics | 43, 44, 61 |
| Wald R.M. — General Relativity | 37, 39—40 |
| Polchinski J. — String theory (volume 2). Superstring theory and beyond | 96, 113 |
| Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 2) | see "Curvature" |
| Davies P. — The New Physics | 33 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 211, 213
Riemann tensor, number of independent components |