Книга | Страницы для поиска |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 67, 469 |
Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 551 |
Zinn-Justin J. — Quantum field theory and critical phenomena | 507 |
Eisenhart L.P. — An introduction to differential geometry with use of the tensor calculus | 101, 103, 120—122, 150, 153 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 288 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 326, 327 |
Papapetrou A. — Lectures on general relativity | 40 |
Torretti R. — Relativity and Geometry | 145, 189, 279, 280, 313 note 8, 318 note 24, note 26 |
Terng Ch. — Critical Point Theory and Submanifold Geometry | 11 |
O'Donnel P. — Introduction to 2-Spinors in General Relativity | 47, 87, 91, 93, 95, 155 |
Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | see Riemann curvature tensor |
Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 2 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | see “Curvature tensor”, “Riemann curvature tensor” |
Frolov V.P., Novikov I.D. — Black Hole Physics: Basic Concepts and New Developments | 53, 623 |
Poisson E. — A relativists toolkit | see “Curvature tensors, Riemann” |
Stephani H. — Relativity: an introduction to special and general relativity | 138 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 240 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 104 |
Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see “Curvature”, “Riemann” |
Kilmister C.W. — General theory of relativity | 72, 155, 230 |
Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 168—173, 182, 197—198, 208, 214 |
Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 57 f., 84, 89, 99 |
Visser M. — Lorentzian wormholes. From Einstein to Hawking | 11, 145, 146, 312, 314, 315, 317, 349 |
Shore S.N. — The Tapestry of Modern Astrophysics | 87—88 |
D'Inverno R. — Introducing Einstein's Relatvity | 77, 78, 80, 81, 86, 88, 104, 108, 119, 133, 135, 141, 142, 145, 171, 179, 275, 280, 282, 288, 299-301, 329 (see also curvature tensor) |
Tsvelik A.M. — Quantum field theory in condensed matter physics | 76 |
Volovik G. — Artificial black holes | 5, 6, 160, 384 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 463—465, 484 |
Rosenfeld B. — Geometry of Lie Groups | 16 |
Hatfield B. — Quantum field theory of point particles and strings | 556 |
Woodhouse N.M.J. — Geometric quantization | 263 |
Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 85 |
Whittaker E. — A history of the theories of aether and electricity (Vol 2. The modern theories) | 166 |
Padmanabhan T. — Cosmology and Astrophysics through Problems | 71 |
Landau L.D., Lifshitz E.M. — The classical theory of fields | 279 |
Bona C., Palenzuela-Luque C. — Elements of Numerical Relativity: From Einstein's Equations to Black Hole Simulations (Lecture Notes in Physics) | 5 |
Zakharov V.D. — Gravitational waves in Einstein's theory | see Tensor, Riemann |
Riley, Hobson — Mathematical Methods for Physics and Engineering | 830 |
Synge J.L. — Relativity: The general theory | 15, 16, 419 |
Tsvelik A.M. — Quantum field theory in condensed matter physics | 76 |
Esposito G. — Dirac Operators and Spectral Geometry | 6 |
Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 487 |
Schutz B.F. — A first course in general relativity | 147, 175 |
Anderson J.L. — Principles of Relativity Physics | 43, 44, 61 |
Wald R.M. — General Relativity | 37, 39—40 |
Polchinski J. — String theory (volume 2). Superstring theory and beyond | 96, 113 |
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 2) | see "Curvature" |
Davies P. — The New Physics | 33 |
Schutz B. — Geometrical Methods in Mathematical Physics | 211, 213
Riemann tensor, number of independent components |