|
|
Результат поиска |
Поиск книг, содержащих: Kaehler manifold
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 449 | Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 137, 150, 257 | Berger M. — A Panoramic View of Riemannian Geometry | 554—556, 665, 666, 670, 681—684 | Eliashberg Y., Mishachev N. — Introduction to the h-Principle | 75 | Barth W., Peters C., Van de Ven A. — Compact complex surfaces | 34—36, 40, 114 | Lee M.H. — Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms | 168 | Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 80 | Goldberg S.I. — Curvature and homology | 163 | Gromov M. — Metric Structures for Riemannian and Non-Riemannian Spaces | D. | Joyce D.D. — Compact Manifolds with Special Holonomy | 56 | McDuff D., Salamon D. — J-Holomorphic Curves and Quantum Cohomology | 61 | Thomas A.D. — Zeta-functions | 172 | Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 199 | Yang K. — Complex Algebraic Geometry: An Introduction to Curves and Surfaces | 78 | Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | 149 | McDuff D., Salamon D. — Introduction to Symplectic Topology | 130—140, 253 | Ito K. — Encyclopedic Dictionary of Mathematics | 232 | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 2) | 430 | Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 11, 29, 32 | O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 325 | Audin M. — Torus Actions on Symplectic Manifolds | 58 | Garcia-Rio E., Kupeli D.N., Vazquez-Lorenzo R. — Osserman Manifolds in Semi-Riemannian Geometry | 16 | Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 347 | Woodhouse N.M.J. — Geometric quantization | 93, 234 | Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 31 | McCrory C., Shifrin T. — Geometry and Topology: Manifolds, Varieties, and Knots | 129, 137 | Thomas A.D. — Zeta functions, introduction to algebraic geometry | 172 | Moore J.D. — Lectures on Seiberg-Witten Invariants | 90 | Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 2) | 504 | Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 199 | Hartshorne R. — Algebraic Geometry | 445, 446, 452 | Greene R.E., Wu H. — Function Theory on Manifolds Which Possess a Pole | 11, 15, 99 | Zeidler E. — Oxford User's Guide to Mathematics | 543 | Silhol R. — Real Algebraic Surfaces | 18 | Lange H., Birkenhake C. — Complex Abelian Varieties (Grundlehren Der Mathematischen Wissenschaften) | 17 | Polchinski J. — String theory (volume 2). Superstring theory and beyond | 307—308, 446, see also "Hyper-Kaehler manifold", "Special Kaehler manifold" | Blair D.E. — Contact Manifolds in Riemannian Geometry | 73 | Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 54, 82 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 330, 334 |
|
|