|
|
Результат поиска |
Поиск книг, содержащих: Carleman, T.
Книга | Страницы для поиска | Самко С.Г., Килбас А.А., Маричев О.И. — Интегралы и производные дробного порядка и некоторые их приложения. | 333, 497, 499, 646 | Olver F.W.J. — Asymptotics and Special Functions | 29 | Nikolskii N.K. — Treatise on the Shift Operator: Spectral Function Theory | 58, 150, 364, 368, 458 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 251, 435, 520 | Chavel I. — Isoperimetric Inequalities : Differential Geometric and Analytic Perspectives | 5I | Polya G., Szego G. — Problems and Theorems in Analysis: Integral Calculus. Theory of Functions | 195, 325, 337, 340, 374 | Cherry W., Ye Z. — Nevanlinna's Theory of Value Distribution: The Second Main Theorem and Its Error Terms | 80 | Serre D. — Handbook of Mathematical Fluid Dynamics, Vol. 1 | 103, 127, 133, 186, 201, 286, 287, 292 [118]; 292 [119] | Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 114, 213, 227 | Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 336 | Lamb H. — Hydrodynamics | 698 | Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | 206, 207, 208, 208 | Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 37, 77 | Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 65, 96, 103, 375 | Saulis L., Statulevicius V.A. — Limit Theorems for Large Deviations | 14 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 12.8 | Guggenheimer H.W. — Differential Geometry | 154, 155 | Пеллер В.В. — Операторы Ганкеля и их приложения. Монография | 91, 593 | Tricomi F.G. — Integral equations | 186, 231 | Young R.M. — An Introduction to Nonharmonic Fourier Series | 114, 213, 227 | Cercignani C. — Theory and Application of the Boltzman Equation | 52, 102, 392, 393, 405 | Feller W. — Introduction to probability theory and its applications (Volume II) | 227, 515 | Shohat J. — The problem of moments | x, xi, 19, 123 | Bracewell R.N. — The Fourier Transform and its applications | 22, 120 | Egorov Y.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 110, 115 | Alexits G., Sneddon I.N. — Convergence Problems of Orthogonal Series | 212, 284 | Titchmarsh E.C. — The Theory of Functions | 3.7 | Smithies F., Hall P. (ed.) — INTEGRAL EQUATIONS (No. 49) | 99 | Bracewell R. — The Fourier Transform and Its Applications | 21, 120 | Dym H., McKean H.P. — Fourier Series and Integrals | 169, 282 | Adams D.R., Hedberg L.I. — Function spaces and potential theory | 325 | Ram-Mohan R. — Finite Element and Boundary Element Applications in Quantum Mechanics | B-5 | Davis H.T. — Introduction to nonlinear differential and integral equations | 454, 547 | Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | 536, 627, 1162, 1163, 1268, 1260, 1277 | Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 502 | Kuczma M. — Functional equations in a single variable | 180, 319 | Reiter H. — Metaplectic Groups And Segal Algebras | VII, VIII, 3, 4, 18, 19, 42, 133 | Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 169, 282 | Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | 536, 927, 1162, 1163, 1268, 1269, 1277 | Santalo L., Kac M. — Integral geometry and geometric probability | 48, 238(81) | Ferziger J.H., Kaper H.G. — Mathematical theory of transport processes in gases | 5, 153, 154, 551 |
|
|