|
|
Результат поиска |
Поиск книг, содержащих: Brahmagupta
Книга | Страницы для поиска | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 118.A 209 | Bach E., Shallit J. — Algorithmic Number Theory (том 1) | 4, 14 | Chou S.-C. — Mechanical Geometry Theorem Proving | 282 | Steele J.M. — Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities | 286 | Everest G., Ward T. — An Introduction to Number Theory | 5 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 183—184, 192 | Humphreys J.F., Prest M.Y. — Numbers, Groups and Codes | 45, 50, 180 | Borwein J., Bailey D. — Mathematics by Experiment: Plausible Reasoning in the 21st Century | 113 | Jones J.A., Jones J.M. — Elementary Number Theory | 13 | Turnbull H.W. — The Great Mathematicians | 54 | Newman J.R. — The World of Mathematics, Volume 1 | 78, 117 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 183—184, 192 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 68, 69, 151, 176, 241, 243, 261, 262, 301, 349, 455—456 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 183—184, 192 | Newman J.R. (ed.) — The World of Mathematics, Volume 4 | 78, 117 | Chabert J.-L., Weeks C., Barbin E. — A History of Algorithms: From the Pebble to the Microchip | 272, 276, 280, 327, 487 | Edwards H.M. — Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory | 27 | Aleksandrov A.D., Kolmogorov A.N. — Mathematics. It's content, methods, and meaning (Vol. 1) | 39 | Coxeter H.S.M., Greitzer S.L. — Geometry revisited | 57 | Lemmermeyer F. — Reciprocity Laws: From Euler to Eisenstein | 11 | Kurosh A. — Higher Algebra | 12 | Struik D.J. — A concise history of mathematics. Volume 2 | 85, 86 | Schubert H. — Mathematical essays and recreations | 130 | Krizek M., Somer L., Luca F. — 17 Lectures on Fermat Numbers: From Number Theory to Geometry | x | Aleksandrov A.D., Kolmogorov A.N., Lavrent'ev M.A. — Mathematics, its content, methods, and meaning | 39 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 159, 177, 295 | Fink K. — A brief history of mathematics | 52, 216 | Heath Th.L. — Diophantus of Alexandria. A Study in the History of Greek Algebra | 281 | Ore O. — Number theory and its history | 26, 122, 193, 208, 247, 249 | Katz V.J. — A History of Mathematics: An Introduction | 214—215, 218—223, 226-227 | Smart N.P. — The algorithmic resolution of Diophantine equations | 5 | Smart N.P. — The algorithmic resolution of Diophantine equations | 5 | Flegg G., Hay C., Moss B. — Nicolas Chuquet, Renaissance Mathematician | 4 | Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 707 | Ifrah G., Bellos D. — The Universal History of Numbers: From Prehistory to the Invention of the Computer | 414, 419, 439, 453 | Stillwell J. — Mathematics and its history | 34, 48, 51, 52 | Wilson R. — Mathematical conversations: selections from The mathematical intelligencer | 259—260 | Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 707 | Kline M. — Mathematical thought from ancient to modern times | 183, 184, 192 | Brezinski C. — History of Continued Fractions and Padé Approximants | 9, 22, 32, 33, 42 | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 52 |
|
|