|
|
Результат поиска |
Поиск книг, содержащих: Manifold, Riemannian
Книга | Страницы для поиска | Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 32 | Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 1, 23 | Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 367 | Lee J.M. — Introduction to Smooth Manifolds | 184 | Lee J.M. — Introduction to Topological Manifolds | 8 | Brin M., Stuck G. — Introdution to dynamical system | 106, 140 | Brieskorn E., Knorrer H. — Plane Algebraic Curves | I 119 . | Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications | 493 | Lima E.L. — Fundamental Groups and Covering Spaces | 146 | Zelikin M.I. — Control Theory and Optimization, Vol. 1 | 9 | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 2) | 425—427 | Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 4 | Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 24 | do Carmo M.P. — Riemannian geometry | 38 | O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 55 | Guggenheimer H.W. — Differential Geometry | 314 | Mercier A. — Analytical and canonical formalism in physics | 9, 33, 37, 54, 70 | Govil N.K. (ed.), Mohapatra R.N. (ed.), Nashed Z. (ed.) — Approximation theory: in memory of A. K. Varma | 201 | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 10, 70, 89, 90, 295, 296, 307, 308 | Wawrzynczyk A. — Group representations and special functions | 63 | D'Inverno R. — Introducing Einstein's Relatvity | 81, 89, 90, 102, 115 | Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 222 | Price J.F. — Lie groups and compact groups | 80 | Hatfield B. — Quantum field theory of point particles and strings | 543 | Sachs R.K., Wu H. — General relativity for mathematicians | 4 | Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 153 | Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 75 | Antoine J.-P. (ed.), Tirapegui E. (ed.) — Functional Integration: Theory and Applications | 65, 191, 229 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 285 | Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 19 | Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 217 | Frankel T. — The geometry of physics: an introduction | 45 | Schutz B.F. — A first course in general relativity | 154, 175 | Zeidler E. — Oxford User's Guide to Mathematics | 543 | Frankel T. — The geometry of physics: An introduction | 45 | Schutz B. — Geometrical Methods in Mathematical Physics | 169, 201—222
Manifold, simply connected | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 285 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 96 | Nash C., Sen S. — Topology and geometry for physicists | 29, 46 |
|
|