|
|
Результат поиска |
Поиск книг, содержащих: Feynman — Kac formula
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 310, 349 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 351.F | Zinn-Justin J. — Quantum field theory and critical phenomena | 17 | Zinn-Justin J. — Quantum field theory and critical phenomena | 18 | Oksendal B. — Stochastic differential equations : an introduction with applications | 135, 190 | Winkler G. — Stochastic Integrals | (12.3.5), (12.5.3) | Fleming W.H., Soner H.M. — Controlled Markov Processes and Viscosity Solutions | 407 | Oksendal B. — Stochastic Differential Equations: An Introduction With Applications | 143, 201 | Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 137, 138 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $279^2$ | Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 123, 124, 125, 127, 128, 130 | Ito K. — Encyclopedic Dictionary of Mathematics | 351.F | Galindo A., Pascual P. — Quantum Mechanics Two | I 128 | Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 86 | Duffie D. — Security Markets. Stochastic Models | 222, 226, 264, 307 | Stone M. — The physics of quantum fields | 147, 155 | Galindo A., Pascual P. — Quantum Mechanics One | 128 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 672, 732, 791, 1128 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 279 | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 370, 372, 384, 385, 448, 449, 453 | Schulman L.S. — Techniques and applications of path integration | 43—48, 171, 173, 178, 272, 273, 330, 339 | Exner P. — Open quantum systems and Feynman integrals | 219, 272, 275, 279, 312 | Hollander Fr. — Large deviations | VIII.1 | Bayin S.S. — Mathematical Methods in Science and Engineering | 639 | Gallavotti G. — Statistical Mechanics | 257 | Antoine J.-P. (ed.), Tirapegui E. (ed.) — Functional Integration: Theory and Applications | 68 | Roepstorf G. — Path integral approach to quantum physics | 48—50 | Carroll R.W. — Mathematical physics | 292 | Feher L. (ed.), Stipsicz A. (ed.), Szenthe J. (ed.) — Topological quantum field theories and geometry of loop spaces | 46, 92, 93 | Albeverio S.A., Hoegh-Krohn R.J. — Mathematical theory of Feynman path integrals | 7, 26 | Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 672, 732, 791, 1128 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 672, 732, 791, 1128 | Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 24 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 391 | Salmhofer M. — Renormalization: an introduction | 5 | Revuz D., Yor M. — Continuous martingales and Brownian motion | 358 | Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 13, 43ff, 47ff, 52ff, 89, 93, 112, 114, 115, 142, 144, 172, 241, 244, 246, 382ff, 462, 463 | Dynkin E. — An Introduction to Branching Measure-Valued Processes | 14, 63 | Rivasseau V. — From Perturbative to Constructive Renormalization | 18, 20 | Rosenberg S. — The Laplacian on a Riemannian manifold | 125 | Pastur L., Figotin A. — Spectra of Random and Almost-Periodic Operators | 100 | Exner P. — Open quantum systems and Feynman integrals | 219, 272, 275, 279, 312 |
|
|