|
|
Результат поиска |
Поиск книг, содержащих: Numbers, rational
Книга | Страницы для поиска | Bartle R.G. — The Elements of Real Analysis | 4 | Kisacanin B. — Mathematical problems and proofs. Combinatorics, Number theory, and Geometry | 3, 12 | Hoffman K., Kunze R. — Linear algebra | 3 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 7—8, 146 | Whittaker E.T., Watson G.N. — A Course of Modern Analysis | 3, 4 | Benson D. — Mathematics and music | 193, 194 | Maeder R.E. — Computer science with mathematica | 110 | Knopp K. — Elements of the Theory of Functions | 3 | Small Ch.G. — Functional Equations and how to Solve Them | 32, 33, 50 | Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 21 | Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 120, 164—165 | Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 9 | Olds C.D., Davidoff G. — Geometry of Numbers | 5, 8 | Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 10 | Franklin J., Daoud A. — Introduction to Proofs in Mathematics | 25, 31, 46, 51 | Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 6 | Newman J.R. — The World of Mathematics, Volume 1 | 326, 511, 513, 525, 538 | Boas R.P. — A Primer of Real Functions | 11 | Hardy G.H. — A course of pure mathematics | 1 et seq. | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 35, 84 | Lawvere F.W., Schanuel S.H. — Conceptual Mathematics: A First Introduction to Categories | 83, 102 | Newman J.R. (ed.) — The World of Mathematics, Volume 4 | 326, 511, 513, 525, 528 | Kasner E., Newman J. — Mathematics and the Imagination | 49, 50 | Char B.W. — First Leaves: A Tutorial Introduction to Maple V | 11 | Ward S.A. — Computation Structures | 46 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 117, 124—127, 129, 131—132, 141, 142 | Knopp K. — Theory and applications of infinite series | 3 seqq. | Browder A. — Mathematical Analysis: An Introduction | 5 | Logsdon M.I. — A Mathematician Explains | 24, 34 | Franzén T. — G #246 del's Theorem: An Incomplete Guide to Its Use and Abuse | 25 | Meijer P.H.E. — Group Theory: The Application to Quantum Mechanics | 62 | Woods F.S., Bailey F.H. — A Course in Mathematics. Volume II | I, 28 | Kasner E., Newman J. — Mathematics and the imagination | 49, 50 | Ore O. — Number theory and its history | 158—164, 319, 320 | Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 2 | Audichya A. — Mathematics: Marvels and milestones | 53 | Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 3 | Courant R. — Differential and Integral Calculus, Vol. 1 | 6 | Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 150, 157 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 5, 67, 163, 223 | Russel B. — Principles of Mathematics | 149ff., 259, 335 | Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 150, 157 |
|
|