|
|
Результат поиска |
Поиск книг, содержащих: Measure, Lebesgue
Книга | Страницы для поиска | Bartle R.G. — The Elements of Integration | 20, 105 | Hunter J.K., Nachtergaele B. — Applied Analysis | 338, 340 | Gray R.M. — Probability, Random Processes and Ergodic Properties | 43, 47 | Shorack G.R. — Probability for statisticians | 4, 6, 23, 38, 67 | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 12, 15, 26 | Rudin W. — Real and Complex Analysis | 50 | Graves L.M. — Theory of Functions of Real Variables | 195 | Steen S.W.P. — Mathematical Logic with Special Reference to the Natural Numbers | 550, 551, 552 | Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 37, 70 | Pugovecki E. — Quantum mechanics in hilbert space | 67, 78, 79, 114 | Adams R.A. — Sobolev Spaces | 14 | Heikkila S., Lakshmikantham V. — Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations | 37 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 638 | Wolkenhauser O. — Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis | 241 | Bogachev V.I. — Measure Theory Vol.1 | 14, 21, 24, 25, 26 | Pfeffer W.F., Fulton W. (Ed) — Riemann Approach to Integration: Local Geometric Theory | 81, 168 | Prugovecki E. — Quantum Mechanics in Hilbert Space | 67, 78, 79, 114 | Falconer K.J. — Techniques in Fractal Geometry | 9 | Jezierski J., Marzantowicz W. — Homotopy Methods in Topological Fixed and Periodic Points Theory | 13 | Loeve M. — Probability Theory (part 1) | 129 | Todorchevich S., Farah I. — Some Aplications of the method of forcing | 128 | Royden H.L. — Real Analysis | 60 | Shreve S.E. — Stochastic Calculus for Finance 2 | 3, 20 | Rall D. — Computational Solution to Nonlinear Operator Equations | 215 | Li M., Vitanyi P. — An introduction to Kolmogorov complexity and its applications | see “Measure, uniform” | Royden H.L. — Real Analysis | 60 | Boas R.P. — A Primer of Real Functions | 195—200 | Shiryaev A.N. — Probability | 154 | Rudin W. — Real and complex analysis | 51 | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 380 | Bogachev V.I. — Measure Theory Vol.2 | I: 14, 21, 24, 25, 26 | Govil N.K. (ed.), Mohapatra R.N. (ed.), Nashed Z. (ed.) — Approximation theory: in memory of A. K. Varma | 394 | Hu S.-T. — Elements of real analysis | 71, 80, 276 | Grimmett G., Stirzaker D. — Probability and Random Processes | 281, 300, 315, 507 | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 380, 51, 182, 191 | Saks S. — Theory of the integral, | 65 | Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 128 | Browder A. — Mathematical Analysis: An Introduction | 213, 215 | Goffman C., Pedrick G. — First course in functional analysis | 115 | Aliprantis C. — Principles of real analysis | 101, 113, 133, 134 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 38, 39 | Hille E. — Methods in classical and functional analysis | 112-119 | Borovik A.V. — Mathematics under the microscope | 132 | Kolmogorov A.N., Fomin S.V. — Measure, Lebesgue Integrals, and Hilbert Space | 7, 40 | Rößler A. — Numerical Methods for Stochastic Differential Equations | 5 | Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 18 | Howes N.R — Modern Analysis and Topology | 233, 262 | Silhavy M. — The Mechanics and Thermodynamics of Continuous Media | 79 | Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 26 | Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 27 | Zeidler E. — Oxford User's Guide to Mathematics | 310, 329 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 38, 39 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 87, 95 | Dennery P., Krzywicki A. — Mathematics for Physicists | 187—189 | Steen S. — Mathematical Logic | 550, 551, 552 | Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | xxviii, 1, 3, 14, 15, 22, 32, 36, 55, 94, 106, 136, 137, 175, 251 |
|
|