|
|
Результат поиска |
Поиск книг, содержащих: Stone — Weierstrass theorem
Книга | Страницы для поиска | Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 219, 221, 235 | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 329, 434, 475 | Bartle R.G. — The Elements of Real Analysis | 185 | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 90, 159, 304, 315, 330 | Rudin W. — Fourier Analysis on Groups | 250 | Rudin W. — Principles of Mathematical Analysis | 162, 190, 246 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 102, 104 | Bochnak J., Coste M., Roy M-F. — Real algebraic geometry | 193, 308, 321 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 151, 281—282 | Axler S., Bourdon p., Ramey W. — Harmonic function theory | 81, 106, 216, 217 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 151 I, 281—282 I | Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 139, 141 | Douglas R.G. — Banach algebra techniques in operator theory | 46 | Davies E. — Spectral Theory and Differential Operators | 32 | Adams R.A. — Sobolev Spaces | 10 | Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 18, 239, 254, 256, 674 | Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 161 | George C. — Exercises in Integration | 3.46, 7.134 | Dugunji J. — Topology | 282 | Berberian S.K. — Fundamentals of Real Analysis | 359, 361 | Pugh C.C. — Real Mathematical Analysis | 223 | Wojtaszczyk P. — A Mathematical Introduction to Wavelets | 215 | Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 103, 128 | Mandic D.P., Chambers J.A. — Recurrent neural networks for prediction: learning algorithms, architectures and stability | 62 | Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 102, 104 | Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 114 | Royden H.L. — Real Analysis | 174, 313 (16) | Baez J.C., Segal I.E., Zhou Z. — Introduction to algebraic and constructive quantum field theory | 278 | Rickart C.E. — General Theory of Banach Algebras | (3.2.12) 124 | Rudin W. — Functional analysis | 115, 377 | Dieudonne J. — Foundation of Modern Analysis | 7.3 | Wojtaszczyk P. — A Mathematical Introduction to Wavelets | 215 | Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 219, 221, 235 | Strichartz R.S. — The way of analysis | 399, 543 | Kirillov A.A. — Elements of the Theory of Representations | 42 | Hu S.-T. — Elements of real analysis | 221 | Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 93, 152, 332, 333 | Conway J.B. — A Course in Functional Analysis | 149 | Ash R.B. — Real Variables with Basic Metric Space Topology | 137 | Saxe K. — Beginning functional analysis | 140 | Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 52, 61, 62, 273, 446 | Dieudonne J. — Foundation of Modern Analysis | 7.3 | Ya Helemskii A., West A. — Banach and locally convex algebras | 223 | Goffman C., Pedrick G. — First course in functional analysis | 34 | Cordes H. — Elliptic Pseudo-Differential Operators - An Abstract Theory | 317 | Aliprantis C. — Principles of real analysis | 88, 89 | Douglas R.G. — Banach algebra techniques in operator theory | 46 | Loomis L.H. — An introduction to abstract harmonic analysis | 9 | Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 94, 95 | Bachman G. — Elements of Abstract Harmonic Analysis | 244 | Walters P. — An introduction to ergodic theory | 135 | Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | IV.6.16 (272) | Pier J.-P. — Mathematical Analysis during the 20th Century | 98 | Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 845 | Kharazishvili A.B. — Nonmeasurable Sets and Functions | 129 | Kantorovitz Sh. — Spectral Theory of Banach Space Operators | 139 | Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | IV.6.16 272 | Cheney W. — Analysis for Applied Mathematics | 359 | Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 96, 274, 344, 360, 367 | Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 149, 151, 152—153 |
|
|