|
|
Результат поиска |
Поиск книг, содержащих: Virasoro algebra
Книга | Страницы для поиска | Cardy J. — Scaling and renormalization in statistical physics | | Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 285, 286 | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 156 | Olver P.J. — Equivalence, Invariants and Symmetry | 102 | Cox D., Katz S. — Mirror symmetry and algebraic geometry | 310, 311, 423—425 | Frenkel E., Ben-Zvi D. — Vertex algebras and algebraic curves | 41, 120, 137, 249, 260, 324 | Harris J., Morrison I — Moduli of curves | 75 | Majid S. — Foundations of Quantum Group Theory | 252, 267 | Dubrovin B.A., Novikov S.P. — Hydrodynamics of soliton lattices | 36 | Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations | 171 | Manin Yu.I. — Topics in noncommutative geometry | II.5.1 | Kac V. — Vertex Algebra for Beginners | 30 | Chari V., Pressley A. — A Guide to Quantum Groups | 31, 64—67, 556 | Thomas C.B. — Elliptic Cohomolgy (The University Series in Mathematics) | 132 | Etingof P., Frenkel I., Kirillov A. — Lectures on Representation Theory and Knizhnik-Zamolodchikov Equations | 25 | Ottesen J.P. — Infinite Dimensional Groups and Algebras in Quantum Physics | 125 | Dorfman I. — Dirac Structures and Integrability of Nonlinear Evolution Equations | 100—102 | Gogolin A.O., Nersesyan A.A., Tsvelik A.M. — Bosonization and Strongly Correlated Systems | 34—38 | Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 304 | Ueno K. — Advances in Moduli Theory | 198 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 360 | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1) | 74 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 743, 757ff, 830ff, 923, 1043 | Wakimoto M. — Lectures on Infinite Dimensional Lie Algebra | 240 | Tsvelik A.M. — Quantum field theory in condensed matter physics | 226 | Hatfield B. — Quantum field theory of point particles and strings | 516, 529—530 | Ohtsuki T. — Quantum invariants: a study of knot, 3-manifolds, and their sets | 432 | Nash C. — Differential Topology and Quantum Field Theory | 174—175, 180—183 | Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 52—57, 75—76 | Zamolodchikov A.A., Zamolodchikov Al.B. — Conformal field theory and critical phenomena in two-dimensional systems | 272—273, 276, 278, 298 | Domb C., Lebowitz J.L. — Phase transitions and critical phenomena (Vol. 11) | 56, 58, 95, 97, 98, 100, 117 | Wakimoto M. — Infinite-Dimensional Lie Algebras | 254 | Rosenberg A.L. — Noncommutative Algebraic Geometry And Representations Of Quantized Algebras | V.2.7 | Onishchik A.L. (ed.), Vinberg E.B. (ed.) — Lie Groups and Lie Algebras | 164 | Zakrzewski W.J. — Low Dimensional Sigma Models | 247, 249, 255, 256, 260, 268 | Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 254 | Dickey L.A. — Soliton Equations and Hamiltonian Systems | 44 | Onishchik A.L., Vinberg E.B. (eds.) — Lie Groups and Lie Algebras (volume 2) | 164 | Kac V. — Vertex Algebras for Beginners | 30 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 521, 523 | Tsvelik A.M. — Quantum field theory in condensed matter physics | 226 | Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena | 36, 51, 88 | Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 27, 46 | Ercolani N.M., Gabitov I.R., Levermore C.D. — Singular limits of dispersive waves | 69—70 | Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 2) | 684, 687 | Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 73 | Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 743, 757ff, 830ff, 923, 1043 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 743, 757ff, 830ff, 923, 1043 | Henkel M. — Conformal Invariance and Critical Phenomena | 60, 83, 133 | Vafa C., Zaslow E. — Mirror symmetry | 336, 337 | Zeidler E. — Oxford User's Guide to Mathematics | 662 | Polchinski J. — String theory (volume 2). Superstring theory and beyond | 228—233ff | Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 295 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 332, 345—351, 354 | Markl M., Shnider S., Stasheff J. — Operads in Algebra, Topology and Physics | 24 |
|
|