|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Dorfman I. — Dirac Structures and Integrability of Nonlinear Evolution Equations |
|
|
Ïðåäìåòíûé óêàçàòåëü |
-scheme for the KdV, Benjamin — Ono and Kadomtsev — Petviashvili equations 151—154
-scheme in Hamiltonian framework, symmetries of Dirac structures 154—157
-scheme of integrability 148—165
-scheme of integrability, examples with conserved Dirac structures 157—159
-scheme, Hamiltonian pairs 159—160
-scheme, Lenard scheme 161—165
-scheme, Lie derivatives in constructing 167
-scheme, Liouville equation 164—165
-scheme, sine-Gordon equation 163—164
2-cococycles 35 98—99
3-dihedral group of algebraic structures 137—139
Adler — Gelfand — Dikii method 106—111 113—114
Algebraic theory, Dirac structures 8—32
Belavin — Drinfeld solutions, Yang — Baxter equation 29—32
Benjamin — Ono (BO) equation 153 157
Benney’s moment equations 102—104
Brackets see “Poisson brackets” “Schouten
Characteristic foliation 19—20
Coboundary 10 14 33—35
Cochains 10
Cocycles 10
Cohomologies 10 12 14 65—68 99
Commutative symmetry algebra 148—154
Complex of formal variational calculus 57—74
Complex of formal variational calculus, cohomology group 65—68
Complex of formal variational calculus, construction 57—60
Complex of formal variational calculus, exactness problem 62—65
Complex of formal variational calculus, general procedure of solving 69—73
Complex of formal variational calculus, invariant operations expressed in terms of Frechet derivatives 61—62
Complex of formal variational calculus, the equation in the ring of polynomials and smooth functions 68—69
Complexes, de Rham 8 12—14 18—19 22 57—60
Complexes, over Lie algebra 11—15
Condition for operator to be Hamiltonian 77—79
Conjugate operator 14—15
Coupled nonlinear wave equation (CNW) 89—97
de Rham complex 8
de Rham complex of a ring 12—14
de Rham complex, construction 57—60
de Rham complex, Dirac structures 18—19
de Rham complex, symplectic operators 22
Density of the functional 59
Differential-geometric type symplectic operators of 146—147
Dirac structures, -scheme 154—159
Dirac structures, algebraic theory 8—32
Dirac structures, basic to Hamiltonian theory 4
Dirac structures, constituting a pair 127—130
Dirac structures, definition 16—17
Dirac structures, finite-dimensional class 18—19
Dirac structures, Hamiltonian operators 22—27
Dirac structures, Lenard scheme of integrability 48—51
Dirac structures, Nijenhuis relations 45—51
Dirac structures, Nijenhuis relations; pairs of Dirac structures 45—51
Dirac structures, pairs of, and Nijenhuis operators 33—56
Dirac structures, reduction to symplectic structures 5—6
Dirac structures, related to Liouville, sine-Gordon, modified KdV and nonlinear Schrodinger equations 131—136
Dirac structures, symplectic operators 20—22
Dubrovin — Novikov-type Hamiltonian structures 104—106
Evolution equations, integrability 34 6—7
Evolution equations, related to local Hamiltonian operators 75—114
Evolution equations, related to local symplectic operators 115—147
Exactness problem in the complex of formal variational calculus 62—65
Faddeev’s auxiliary conditions 5
Foliation, characteristic 19—20
Frechet derivatives, complex of formal variational calculus 60—62
Frechet derivatives, Hamiltonian conditions 77—79
Frechet derivatives, local symplectic operators 116—119
Frobenius theorem 19—20 31
Functional, density of the 59
Graded spaces 8—10
Hamiltonian operators, -scheme 154—157
Hamiltonian operators, Adler — Gelfand — Dikii method of constructing, pairs 106—111 113—114
Hamiltonian operators, conditions in an explicit form 77—79
Hamiltonian operators, Dirac structure 22—27
Hamiltonian operators, Dubrovin — Novikov-type 104—106
Hamiltonian operators, first order, in the one-variable case 80—82
Hamiltonian operators, Kirillov — Kostant-type hydrodynamic structures 102—104
Hamiltonian operators, Korteweg — de Vries and Harry Dym equations 85—89
Hamiltonian operators, Lenard scheme for Hamiltonian and symplectic pairs 51—56
Hamiltonian operators, Lie derivatives in constructing Hamiltonian pairs 159—160
Hamiltonian operators, local, and evolution equations 75—114
Hamiltonian operators, pairs and associated Nijenhuis operators 42—48
Hamiltonian operators, third-order 82—85
Hamiltonian operators, upper bounds for the level of symplectic operators and 142—146
Hamiltonian operators, Virasoro algebra 100—102
Hamiltonian operators, Yang — Baxter equation 29—31
Hamiltonian theory, general algebraic scheme 8—32
Hamiltonian theory, introduction 1—7
Hamiltonian vector fields, -scheme 154—157
Hamiltonian vector fields, Dirac structures 17
Hamiltonian vector fields, symplectic operators 21—22
Harry Dym(HD) equations 85—89
Hereditary or A-operators 56
Homotypy, algebraic 63—64
Integrability, x-scheme 148—165 (see also “Particular subjects”)
| Invariant operations expressed in terms of Frechet derivatives 61—62
Invariants and symmetries 15—16
Inverse scattering method 34
Kadomtsev — Petviashvili(KP) equation 153—154 158
KdV (Korteweg-de Vries) equation, -scheme 151—153 158—159 162—163
KdV (Korteweg-de Vries) equation, coupled nonlinear wave equation 89—97
KdV (Korteweg-de Vries) equation, Dirac structures 135
KdV (Korteweg-de Vries) equation, Hamiltonian dynamical system 5—6
KdV (Korteweg-de Vries) equation, Hamiltonian theory 3—7
KdV (Korteweg-de Vries) equation, Lenard schemes for the potential 125—130
KdV (Korteweg-de Vries) equation, local Hamiltonian operators 85—89
KdV (Korteweg-de Vries) equation, Virasoro algebra and two Hamiltonian structures of the 100—102
Kirillov — Kostant structures, Adler — Gelfand — Dikii method 106—111 113
Kirillov — Kostant structures, canonical example of a Poisson structure 4
Kirillov — Kostant structures, deformations of 96—100 113
Kirillov — Kostant structures, hydrodynamic, Benney’s moment equations 102—104
Kirillov — Kostant structures, infinite-dimensional 89—97
Kirillov — Kostant structures, symplectic structure 24
Kirillov — Kostant structures, Virasoro algebra 100—102
KN equation see “Krichever — Novikov(KN) equation”
Korteweg-de Vries equation see “KdV (Korteweg-de Vries) equation”
KP equation see “Kadomtsev — Petriashvili(KP) equation”
Krichever — Novikov(KN) equation, Hamiltonian presentation 6
Krichever — Novikov(KN) equation, Lenard scheme 122—125
Krichever — Novikov(KN) equation, pair of local symplectic operators 120—125 147
Lax type equations 109—111
Lenard scheme, -scheme 161—165
Lenard scheme, applied to the Krichever — Novikov(KN) equation 122—125
Lenard scheme, for Hamiltonian and symplectic pairs 51—56
Lenard scheme, hierarchy of the Liouville equation 134—135
Lenard scheme, integrability for Dirac structures 33 48—51
Lenard scheme, KdV (Korteweg-de Vries) equation 93—94
Lenard scheme, Liouville equation 165
Lenard scheme, local Hamiltonian operators 85—89
Lenard scheme, sine-Gordon equation 133—134 163—164
Lenard scheme, two, for the potential KdV equation 125—130
Lie algebra, commutative symmetry 148—154
Lie algebra, complexes over 11—15
Lie algebra, de Rham complex 8
Lie algebra, deformations of, and Nijennuis operators 33—35
Lie algebra, framework for Dirac structures 6
Lie algebra, graded spaces 9—10
Lie algebra, Lie derivatives 15—16 159—160
Lie algebra, local Hamiltonian operators 90—97
Lie algebra, Poisson bracket 2—3
Lie algebra, skew-symmetry 2—3
Lie algebra, structures in the space of 1-forms 25—27
Lie algebra, Yang — Baxter equation 29—32
Liouville equation 3 41 134—135 164—165
Matrix differential operators, local Hamiltonian operators 75—77
Matrix differential operators, symplecticity conditions 115—117
Matrix differential operators, theorem 101—102
Nijennuis operators, deformations of Lie algebras 33—35
Nijennuis operators, Hamiltonian pairs 42—48
Nijennuis operators, hierarchies of 2-forms generated by regular structures 39—42
Nijennuis operators, Nijenhuis torsion, conjugate to 37—39
Nijennuis operators, pairs of Dirac structures 33—56
Nijennuis operators, pairs of Dirac structures, Nijenhuis relations 45—51
Nijennuis operators, properties of and two Dirac structures 129—130
Nijennuis operators, properties of, symmetry generation 36—37
Nonlinear Schrodinger(NLS) equations 135—136
Poisson brackets, Lenard scheme of integrability 50 52
Poisson brackets, Lie algebra structure 2—3 17—18
Poisson brackets, presymplectic manifold 4—5
Poisson brackets, reference 114
Presymplectic manifold 4—5
Reduction procedure 15—16
references 166—172
Ring of polynomials, complex of formal variational calculus 65 68—69
Schouten bracket, the 27—29 90—92
Schrodinger (NLS) system, nonlinear 135—136
Sine-Gordon equation 133—134 163—164
Skew-symmetry, Hamiltonian operators 26—27
Skew-symmetry, Lie algebra 2—3
Skew-symmetry, local Hamiltonian operators 76—77
Skew-symmetry, local symmetric operators 116—120
Skew-symmetry, mapping 14
Soliton theory 3 114
Structure function 96—100
Superalgebra, Lie 9—10 28
Symmetries and invariants 15—16
Symmetry generation, properties of Nijenhuis operators 36—37
Symplectic manifold 1—2 4—5
Symplectic operators, conditions guaranteeing symplecticity of a pair 54—55
Symplectic operators, constituting a pair 48
Symplectic operators, differential-geometric type 146—147
Symplectic operators, graphs of linear operators 20—22
Symplectic operators, Lenard scheme for Hamiltonian and symplectic pairs 51—56
Symplectic operators, local, and evolution equations related to them 115—147
Symplectic operators, many-variable case with linear dependence on 137—142
Symplectic operators, one-variable case: first- and third-order 117—120
Symplectic operators, upper bounds for the level of, and Hamiltonian operators 142—146
Virasoro algebra 100—102
Yang — Baxter equation, Belavin — Drinfeld solutions 29—32
|
|
|
Ðåêëàìà |
|
|
|