Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ottesen J.P. — Infinite Dimensional Groups and Algebras in Quantum Physics
Ottesen J.P. — Infinite Dimensional Groups and Algebras in Quantum Physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Infinite Dimensional Groups and Algebras in Quantum Physics

Автор: Ottesen J.P.

Аннотация:

The representation theory of infinite-dimensional groups is an important tool for studying conformal field theory, problems in statistical mechanics, and string theory. Using the ideas of classical representation theory and basic facts of functional analysis, the author constructs the spin representations of the infinitesimal orthogonal group and the metaplectic representation of an infinite-dimensional symplectic group. A constructive approach is chosen. The author discusses loop algebras and the Virasoro algebra and gives applications in the last chapter. The text addresses graduate students and is of considerable interest to researchers due to a novel approach closer to the traditional line of reasoning in quantum physics.


Язык: en

Рубрика: Математика/Алгебра/Теория представлений/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1995

Количество страниц: 218

Добавлена в каталог: 30.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Admissible representation      113
Affine Kac — Moody algebra      102
Almost linear operators      34
Annihilation operator      21 66
Bogoliubov transformation      19 82
Boson-fermion correspondance      175
Canonical anti-commutation relations      18
Canonical commutation relations      62
CAR-algebra      18
CAR-algebra, Fock representation of      20
Casimir operator      111
Casimir operator, shifted      115
CCR-algebra      75
CCR-algebra, Fock representation of      75
Central extension      102
Charge gradation      55
Charge operator      54
Clifford algebra      24
Complex structure      33 81
Creation operator      21 64
Diffeomorphism group      188
Diffeomorphism group as a symplectic group      203
Energy operator      135 192 195
Energy operator, decomposition of      197
Energy operator, sector energy operator      207
Fermionic oscillator algebra      132
Finite energy representation      136
Finite energy subspace      134
Fock Hilbert space      13
Fock Hilbert space, antisymmetric      15
Fock Hilbert space, symmetric      15
GKO construction      165
Highest component      157
Highest weight      109 126 156
Highest weight representation      109 126 156
Highest weight vector      109 126 156
Index-tuples      208
Killing form      101
Level      165
Loop algebra      100
Loop group      100
Loop group $LS^1$      172
Loop group $LS^1$, projective representation of      187
Loop group $LS^1$, the charge group C      172 182
Loop group $LS^1$, the special loop group $SLS^1$      172
Loops      100
Lowest weight representation      144
Metaplectic group      94
Metaplectic Lie algebra      94
Metaplectic representation      94
Neveu — Schwarz sector      132
Orthogonal group      24
Orthogonal group, restricted      34
Positive energy representation      136 192 198
Pre-Lie-algebra      35 83
Restricted unitary group      50
Second quantization      28 79
Sector vacuum      197
Shift operator      183
Spin group      44
Spin Lie algebra      45
Spin representation      44
Sugawara construction      119
Symplectic group      81
Symplectic group, restricted      83
Vacuum functional      46 97
Vacuum vector      14
Verma module      107
Virasoro algebra      125
Virasoro operators      134
Weyl operator      70
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте