|
|
 |
| Результат поиска |
Поиск книг, содержащих: Spectral mapping theorem
| Книга | Страницы для поиска | | Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 181, 207, 241, 273 | | Nagel R. — One-parameter semigroups of positive operators | 60, 67, 82, 106 | | Hunter J.K., Nachtergaele B. — Applied Analysis | 234, 285 | | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 222 | | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 251.G | | Hedenmalm H., Korenblum B., Zhu K. — Theory of Bergman spaces | 37 | | Kuttler K. — Introduction to linear algebra for mathematicians | 312 | | Takesaki M. — Theory of Operator Algebras I | 11 | | Douglas R.G. — Banach algebra techniques in operator theory | 45 | | Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 19, 243, 270, 271 | | Halmos P.R. — Hilbert Space Problem Book | 74, 123 | | Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 65 | | Arveson W. — A Short Course on Spectral Theory | 19 | | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 222, 109, 181—1834 | | Engel K.-J., Nagel R. — Short Course on Operator Semigroups | 161, 176 | | Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 222 | | Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations (preliminary version of 10 September 1998) | 41, 255, 281 | | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $222^1$, 109, 181—183 | | Rickart C.E. — General Theory of Banach Algebras | 33, (3.5.1) 157 | | Rudin W. — Functional analysis | 244, 247 | | Ito K. — Encyclopedic Dictionary of Mathematics | 251.G | | Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 181, 207, 241, 273 | | Radjavi H., Rosenthal P. — Simultaneous Triangularization | 3 | | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 222 | | Kreyszig E. — Advanced engineering mathematics | 344, 865 | | Neubrander F. (Ed), Ferreyra G.S. (Ed) — Evolution Equations, Vol. 168 | 96, 312 | | Conway J.B. — A Course in Functional Analysis | 208, 245, 296 | | Larsen R. — Banach algebras: An Introduction | 152 | | Ya Helemskii A., West A. — Banach and locally convex algebras | 117, 121 | | Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 89 | | Kreyszig E. — Introductory functional analysis with applications | 381 | | Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 260 | | Hille E. — Methods in classical and functional analysis | 296, 302, 354-361 | | Douglas R.G. — Banach algebra techniques in operator theory | 45 | | Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 719 | | Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 16 | | Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 1) | 16 | | Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 260 |
|
|