| Книга | Страницы для поиска |
| Kharazishvili A.B. — Strange functions in real analysis | |
| Keisler H.J. — Elementary calculus | 156 |
| Bulirsch R., Stoer J. — Introduction to numerical analysis | 265, 320 |
| Abell M.L., Braselton J.P. — Mathematica by Example | 209 |
| Coley D.A. — An Introduction to Genetic Algorithms for Scientists and Engineers | 8 |
| Jensen F. — Introduction to Computational Chemistry | 339 |
| Fletcher R. — Practical methods of optimization. Volume 1: unconstrained optimization | 10, 30, 89 |
| Meisel W.S. — Computer-oriented approach to pattern recognition | 60 |
| Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 162, 365 |
| Braselton J.P. — Maple by Example | 202 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 257 |
| Coffin D. — Calculus on the HP-48G/GX | 248 |
| Bhatti M. — Practical Optimization Methods | 133 |
| Sinha S.M. — Mathematical Programming: Theory and Methods | 99, 324 |
| Elberly D.H., Shoemake K. — Game Physics | 421 |
| Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 640 |
| Giorgi G., Thierfelder J. — Mathematics of Optimization: Smooth and Nonsmooth Case | 4 |
| Greenberg M.D. — Advanced engineering mathematics | 659 |
| Bonnans F.J., Gilbert C.J., Lemarechal C. — Numerical Optimization | see "Solution" |
| Naniewicz Z., Panagiotopoulos P.D. — Mathematical Theory of Hemivariational Inequalities and Applications | 15 |
| Unertl W.N. — Physical Structure | 113 |
| Allaire G. — Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation | 285 |
| Kuttler K. — Calculus, Applications and Theory | 127 |
| Antia H.M. — Numerical Methods for Scientists and Engineers | 346, 359, 360 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 185, 187 |
| Krantz S.G. — Handbook of Real Variables | 74 |
| Kreyszig E. — Advanced engineering mathematics | 937 |
| Marques de Sa J.P. — Pattern recognition: concepts, methods, and applications | 157, 177 |
| Bertsekas D.P. — Constrained Optimization and Lagrange Multiplier Methods | 19, 66 |
| Ash R.B. — Real Variables with Basic Metric Space Topology | 83 |
| Arwini K. — Information Geometry: Near Randomness and Near Independence | 207 |
| Denn M. — Optimization by variational methods | 6, 197 (see also Necessary conditions; Sufficient conditions) |
| Novikov S.P., Fomenko A.T. — Basic elements of differential geometry and topology | 11 |
| Craven B.D. — Mathematical Programming and Control Theory | 27, 28, 119 |
| Antes H., Panagiotopoulos P.D. — The boundary integral approach to static and dynamic contact problem | 226, 232 |
| Hartmann A.K., Rieger H. — Optimization Algorithms in Physics | 256 |
| Gullberg J. — Mathematics: from the birth of numbers | 341 |
| Bäck T. — Evolutionary Algorithms in Theory and Practice | 37, 39, 56, 140 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 87 |
| Zorich V. — Mathematical Analysis | 87 |
| BertsekasD., Tsitsiklis J. — Neuro-Dynamic Programming (Optimization and Neural Computation Series, 3) | 78 |
| Daniels R.W. — Introduction to numerical methods and optimization techniques | 179, 221 |
| Pallaschke D., Rolewicz S. — Foundations of Mathematical Optimization. Convex Analysis without Linearity | 97 |
| Voit E. — Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists | 174, 179 |
| Giorgi G., Guerraggio A., Thierfelder J. — Mathematics of optimization | 4 |