|
|
 |
| Результат поиска |
Поиск книг, содержащих: Bernoulli, Jacob
| Книга | Страницы для поиска | | Peebles P.Z. — Probability, random variables, and random signal principles | 25n. | | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 89, 360 | | Ewald W. — From Kant to Hilbert, Vol.2 | 225 | | Estep D.J. — Practical Analysis in One Variable | 246, 436, 514 | | Ewald W. — From Kant to Hilbert, Vol.1 | 225 | | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 279—281 | | Ross S. — A First Course in Probability | see “James Bernoulli” | | Bardi J.S. — Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time | 116, 132, 156, 157 | | Turnbull H.W. — The Great Mathematicians | 80, 95, 124 | | Phillips G.M. — Interpolation and Approximation by Polynomials | 134 | | Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 209, 210, 231 | | Tucker А. — Applied Combinatorics | 231 | | Shafer G., Vovk V. — Probability and finance | 1654—1705 | | Weyl H. — Philosophy of mathematics and natural science | 34, 195, 196 | | Cotterill R.M.J. — Biophysics: An Introduction | 373 | | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 282 | | Tucker A. — Applied Combinatorics | 231 | | Hancock H. — Elliptic Integrals | 6, 7 | | Rainville E. D. — Intermediate Course in Differential Equations | 61 | | Patnaik S., Hopkins D. — Strength of Materials: A New Unified Theory for the 21st Century | xvii, 32, 48, 154, 164 | | Fink K. — A brief history of mathematics | 148, 150, 152, 171, 175, 178, 179, 238, 239 | | Lemons D.S. — Perfect form: Variational principles, methods, and applications in elementary physics | 23 | | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 225 | | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 89, 360 | | Klein F. — Elementary Mathematics From an Advanced Standpoint: Arithmetic, Algebra, Analysis | 200 | | Polya G. — Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving Combined Edition | 1 76 | | Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 172, 219, 244—245 | | Zorich V.A., Cooke R. — Mathematical analysis II | 555, 635 | | Posamentier A.S. — The Fabulous Fibonacci Numbers | 131—132 | | Zorich V. — Mathematical Analysis | 555, 635 | | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 225 | | Mach E. — The Principles of Physical Optics: An Historical and Philosophical Treatment | 57 | | Hancock H. — Elliptic Integrals | 6, 7 | | Hancock H. — Elliptic integrals | 6, 7 |
|
|