| Книга | Страницы для поиска |
| Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 135, 212—214, 339 |
| Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 497, 540 |
| Cossec F., Dolgachev I. — Enriques surfaces | 106 |
| Friedman.R. — Algebraic Surfaces and Holomorphic Vector Bundles | 173 |
| Cvitanovic P. — Group theory (Lie and other) | 75 |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 298 |
| Conte R. — Painleve Property: One Century Later | 329, 751, 753 |
| Mimura M., Toda H. — Topology of Lie Groups, I and II | 289 |
| Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 355 |
| Le Bruyn L. — Noncommutative geometry | 147 |
| Atiyah M. — Representation Theory of Lie Groups | 112 |
| Terng Ch. — Critical Point Theory and Submanifold Geometry | 82 |
| Humphreys J.E. — A Course in Group Theory | 230 |
| Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 293 |
| Parshin A.N., Shafarevich I.R. — Algebraic Geometry IV: Linear Algebraic Groups Invariant Theory | 40 |
| Borel A., Mostow G.D. — Algebraic Groups and Discontinuous Subgroups: Proceedings | 33—35, 37, 41, 46, 53 |
| Arnold V.I. — Theory of Singularities and Its Applications | 26 |
| Chari V., Pressley A. — A Guide to Quantum Groups | 92, 562 |
| Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 269 |
| Dimca A. — Singularities and Topology of Hypersurfaces | 60, 221—224 |
| Georgi H. — Lie algebras in particle physics | 71 |
| Helgason S. — Differential Geometry, Lie Groups and Symmetric Spaces | 462 |
| Borel A. — Linear algebraic groups | 14.7 |
| Simon B. — Representations of Finite and Compact Groups | 186, 197, 199, 201, 203 |
| Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1) | 284 |
| Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 209 ff |
| Ebeling W. — The Monodromy Groups of Isolated Singularities of Complete Intersections | 13 |
| Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 143—146, 170 |
| Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 101 |
| Jensen C.U., Lenzing H. — Model Theoretic Algebra with particular emphasis on Fields, Rings, Modules | 169 |
| Silverman J.H. — Advanced Topics in the Arithmetic of Elliptic Curves | 353 |
| Springer T.A. — Linear Algebraic Groups | 168 |
| Wakimoto M. — Lectures on Infinite Dimensional Lie Algebra | 3 |
| Aschbacher M. — Finite Group Theory | 250 |
| Goryunov V.I., Lyashko O.V. — Dynamical Systems VI: Singularity Theory I, Vol. 6 | 64, 128 |
| Conte R. — The Painlevé property: One century later | 329, 751, 753 |
| Friedman R. — Algebraic Surfaces and Holomorphic Vector Bundles | 173 |
| Slodowy P. — Simple Singularities and Simple Algebraic Groups | 18, 19, 107 |
| Wakimoto M. — Infinite-Dimensional Lie Algebras | 43 |
| Naimark M.A., Stern A.I. — Theory of Group Representations | 4 |
| Milnor J., Husemoller D. — Symmetric Bilinear Forms | 139 |
| Humphreys J.E. — Reflection groups and Coxeter groups | 39 |
| Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 43 |
| de Graaf W.A. — Lie Algebras: Theory and Algorithms | 141 |
| IItaka S. — Algebraic Geometry: An Introduction to Birational Geometry of Algebraic Varieties | 307 |
| Hausner M., Schwartz J.T. — Lie groups, Lie algebras | 120—121 |
| Humphreys J.E. — Introduction To Lie Algebras And Representation Theory | 57 |
| Serre J.-P. — Complex Semisimple Lie Algebras | 38—39 |
| Christe P., Henkel M. — Introduction to conformal invariance and its applications to critical phenomena | 16 |
| Friedman R., Morgan J.W. — Smooth four-manifolds and complex surfaces | 179, 181, 183, 184, 187—192, 401, 403 |
| Hartshorne R. — Algebraic Geometry | 420 |
| Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 101 |
| Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 101 |
| Henkel M. — Conformal Invariance and Critical Phenomena | 28 |
| Vafa C., Zaslow E. — Mirror symmetry | 99, 677 |
| Vassiliev V.A. — Applied Picard-Lefschetz Theory | 45 |
| Ma Z.-Q., Gu X.-Y. — Problems and Solutions in Group Theory for Physicists | 272 |
| Chen B.-y. — Geometry of submanifolds and its applications | 57 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 291 |