|
|
Результат поиска |
Поиск книг, содержащих: Conformal invariance
Книга | Страницы для поиска | Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 72, 272 | Zinn-Justin J. — Quantum field theory and critical phenomena | 636, 689, 905 | Zinn-Justin J. — Quantum field theory and critical phenomena | 618, 661, 869 | Cox D., Katz S. — Mirror symmetry and algebraic geometry | 420, 424 | Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 39, 41, 96, 100 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 30, 241, 258, 261, 272 | Grimmett G. — Percolation | 253, 346, 396 | Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 19 | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 102 | Yeomans J.M. — Statistical Mechanics of Phase Transitions | 120 | Kadanoff L.P. — Statistical physics | 226 | Ramond P. — Field Theory: A Modern Primer | 41, 47, 54, 189 | Slade G. — The Lace Expansion and Its Applications | 70 | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 2) | 20 | Elizalde E., Odintsov A.D., Romeo A. — Zeta Regularization Techiques with Applications | 116 | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1) | 33, 36, 172—174, 361 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 118, 133, 135, 137, 198, 213 | Dokshitzer Yu.L., Khoze V.A., Mueller A.H. — Basics of perturbative QCD | 46 | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 122 | Logan J.D. — Invariant Variational Principles | 158—161 | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 44, 62, 79—81, 123ff., 146, 174, 173—189, 203, 312—323, 319 | D'Inverno R. — Introducing Einstein's Relatvity | 88 | Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods | 547 | Volovik G. — Artificial black holes | 225, 227, 232 | Adler S.L. — Quantum theory as emergent phenomenon | 11, 58 | Nash C. — Differential Topology and Quantum Field Theory | 174, 247, 258, 301, 311, 314, 317 | Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 43—45 | Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 545 | Fordy A.P., Wood J.C. (eds.) — Harmonic maps and integrable systems | 31, 33 | Zakrzewski W.J. — Low Dimensional Sigma Models | 48, 121, 200, 247, 260 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 502 | Adams D.R., Hedberg L.I. — Function spaces and potential theory | 49 | Avramidi I.G. — Heat Kernel and Quantum Gravity | 68 | Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 21, 38, 39, 53, 87, 106 | Forschaw J.R., Ross D.A. — Quantum chromodynamics and the pomeron | 101 | Amelino-Camelia G., Kowalski-Glikman J. — Planck Scale Effects in Astrophysics and Cosmology (Lecture Notes in Physics) | 262 | Henkel M. — Conformal Invariance and Critical Phenomena | 4, 49, 54, 326, 351 | Wald R.M. — General Relativity | 447—449 | Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 129 | Haag R. — Local quantum physics: fields, particles, algebras | 249 | Nash C., Sen S. — Topology and geometry for physicists | 259—260 | Jost J. — Bosonic Strings: A mathematical treatment | 23, 28 |
|
|