|
|
Результат поиска |
Поиск книг, содержащих: Hamel basis
Книга | Страницы для поиска | Kharazishvili A.B. — Strange functions in real analysis | | Hunter J.K., Nachtergaele B. — Applied Analysis | 94 | Halmos P.R. — Hilbert Space Problem Book | 2, 7, 30, 54 | Halmos P.R. — Measure Theory | 277 | Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 18, 19 | Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 168—169, 214 | Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 1 | Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | 6, 7, 33, 43—49, 51, 57, 59, 63, 65, 67 | Hrbacek K., Jech T. — Introduction to Set Theory | 146 | Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | 37 | Dugunji J. — Topology | 35 | Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 9 | Bruckner A.M. — Differentiation of Real Functions | 2 | Wilansky A. — Modern Methods in Topological Vector Spaces | 8, 66, 143 | Rudin W. — Functional analysis | 52 | Rall D. — Computational Solution to Nonlinear Operator Equations | 11 | Boas R.P. — A Primer of Real Functions | 138 | Kaczor W.J., Nowak M.T. — Problems in Mathematical Analysis ll: Continuity and Differentiation, Vol. 2 | 197 | Duffie D. — Security Markets. Stochastic Models | 68 | Bogachev V.I. — Measure Theory Vol.2 | I: 65, 86 | Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 128 | Bourbaki N. — Algebra I: Chapters 1-3 | II, § 7, no. 1 | Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 5, 10, 57 | Hu S.-T. — Elements of real analysis | 46 | Aczel J. — Lectures on functional equations and their applications | 35 | Young R.M. — An Introduction to Nonharmonic Fourier Series | 1 | Billingsley P. — Probability and Measure | 14.11 | Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 18, 19, 21, 24, 57, 124, 6, 265, 277, 371, 372 | Conway J.B. — A Course in Functional Analysis | 375 | Lackzovich M. — Conjecture and Proof | 34 | Saxe K. — Beginning functional analysis | 11 | Korevaar J. — Tauberian Theory: A Century of Developments | 185 | Curtis M.L. — Abstract Linear Algebra | 24 | Barut A.O., Raczka R. — Theory of Group Representations and Applications | 137 | Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 20 | Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 178, 251 | Goffman C., Pedrick G. — First course in functional analysis | 55 | Kreyszig E. — Introductory functional analysis with applications | 55, 211 | Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 9 | Hille E. — Methods in classical and functional analysis | 419 | Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 18 | Dineen S. — Complex Analysis of Infinite Dimensional Spaces | 146, 247, 447 | Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 28, 64, 162, 164, 203, 217, 220, 221, 222 | Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 61 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 9 | Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 146 |
|
|