|
|
Результат поиска |
Поиск книг, содержащих: Weierstrass, Karl
Книга | Страницы для поиска | Apostol T.M. — Calculus (vol 1) | 17, 423, 427 | Keisler H.J. — Elementary calculus | 903 | Hilgert J. — Analysis I - IV | 77 | Hille E. — Ordinary Differential Equations in the complex domain | 17, 21, 24, 26, 33, 34, 35, 36, 42 | Ewald W. — From Kant to Hilbert, Vol.2 | 4, 5, 10, 11, 168, 170, 171, 226, 564, 565, 568, 727, 766, 793, 838, 840,847, 849, 887, 897, 898, 899, 929, 941, 942, 944, 956, 958, 964, 966, 1013, 1091, 1099, 1113, 1169, 1235, 1238, 1247 | Link G. (Ed) — One Hundred Years of Russell's Paradox: Mathematics, Logic, Philosophy | 375, 553 | Ewald W. — From Kant to Hilbert, Vol.1 | 4, 5, 10, 11, 168, 170, 171, 226, 564, 565, 568 | Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 59, 616 | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 114—116, 129 | Olds C.D., Davidoff G. — Geometry of Numbers | 151 | Dawson Jh.W. — Logical Dilemmas: The Life and Work of Kurt Godel | 42, 322 | Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 109 | MacLane S. — Saunders MacLane: A Mathematical Autobiography | 343 | Rainville E.D. — Special Functions | 6, 9, 10—11, 13—15, 48, 309, 343 | Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 246, 249 | Apostol T.M. — Modular Functions and Dirichlet Series in Number Theory | 6 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 401, 465, 466, 468 | Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 17, 423, 427 | Phillips G.M. — Interpolation and Approximation by Polynomials | 87 | Tourlakis G.J. — Lectures in Logic and Set Theory: Mathematical Logic | 109 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 133, 134 | Saxe K. — Beginning functional analysis | 12, 136 | Hancock H. — Elliptic Integrals | 24, 28 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 180, 181, 247, 248 | Borovik A.V. — Mathematics under the microscope | 117 | Kazarinoff N. — Analytic inequalities | 27 | Marsden J., Weinstein A. — Calculus 1 | 6 | Katz V.J. — A History of Mathematics: An Introduction | 658, 672, 727—729, 732, 737, 809 | Cofman J. — Numbers and shapes revisited: More problems for young mathematicians | 51, 57 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 4, 5, 10, 11, 168, 170, 171, 226, 564, 565, 568, 727, 766, 793, 838, 840, 847, 849, 887, 897, 898, 899, 929, 941, 942, 944, 956, 958, 964, 966, 1013, 1091, 1098, 1099, 1113, 1169, 1235, 1238, 1247 | Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 135, 164 | Zeidler E. — Oxford User's Guide to Mathematics | 148, 533, 565, 576, 633, 803, 807, 1032, 1190 | Kline M. — Mathematics for the Nonmathematician | 27 | Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 251—252 | Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 126 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 176, 219, 220, 221, 229, 236, 237 | Davis P.J. — Mathematics of Matrices | 330 | Hubbard B. — The World According to Wavelets: The Story of a Mathematical Technique in the Making | 108—110, 113, 181 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 4, 5, 10, 11, 168, 170, 171, 226, 564, 565, 568 | Wilson R. — Mathematical conversations: selections from The mathematical intelligencer | 130, 241, 244, 345—346, 348—350, 352, 356, 370, 419, 421, 423—427 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 46—47, 62 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 136, 140, 148 | Hancock H. — Elliptic Integrals | 24, 28 | Hancock H. — Elliptic integrals | 24, 28 |
|
|