|
|
Результат поиска |
Поиск книг, содержащих: Curvature, scalar
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 261 | Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 34, 126, 134 | Kobayashi S. — Differential geometry of complex vector bundles | 26 | Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 124 | Joyce D.D. — Compact Manifolds with Special Holonomy | 44 | Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 256, 270, 395, 414, 511 | Terng Ch. — Critical Point Theory and Submanifold Geometry | 12 | Joyce D.D. — Riemannian holonomy groups and calibrated Geometry | 42 | Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 53, 262, 266, 330 | Petersen P. — Riemannian Geometry | 39, 213 | Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 201 | Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | I-294 | Berard P.H. — Spectral Geometry | 40 | Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 7 | De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 112 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 117, 132—133, 198, 266 | O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 88 | Borne T., Lochak G., Stumpf H. — Nonperturbative quantum field theory and the structure of matter | 278 | O'Neill B. — The Geometry of Kerr Black Holes | 18 | Oprea J. — Differential Geometry and Its Applications | 421 | Grosche C., Steiner F. — Handbook of Feynman path integrals | 68 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 238 | Whittaker E. — A history of the theories of aether and electricity (Vol 2. The modern theories) | 167 | Sperb R.P. — Mathematics in Science and Engineering. Volume 157. Maximum principles and their applications | 56 | Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 1 | 294 | Joyce D.D. — Compact manifolds with special holonomy | 44 | Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 53, 262, 266, 330 | Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 109 | Sperb R.P. — Maximum principles and their applications | 56 | Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 470 | Joyce D. — Riemannian Holonomy Groups and Calibrated Geometry (Oxford Graduate Texts in Mathematics) | 42 | Rosenberg S. — The Laplacian on a Riemannian manifold | 61 |
|
|