| Книга | Страницы для поиска |
| Aleksandrov A.D., Zalgaller V.A. — Intrinsic Geometry of Surfaces | 19 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 80.C 364.B |
| Guillemin V., Sternberg S. — Geometric Asymptotics | 21 |
| Hicks N. — Notes on differential geometry | 19, 27, 57 |
| Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 60—62, 94 |
| Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 370 |
| Millman R.S., Parker G.D. — Elements of Differential Geometry | 118 |
| Isham J. — Modern Differential Geometry for Physics | 267, 268 |
| Bitsadze A.V. — Equations of mathematical physics | 173 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 220 |
| Terng Ch. — Critical Point Theory and Submanifold Geometry | 7 |
| Zelikin M.I. — Control Theory and Optimization, Vol. 1 | 228 |
| Aleksandrov A.D., Zalgaller V.A. — Intrinsic Geometry of Surfaces | 19 |
| Dupont J.L. — Curvature and Characteristic Classes | 38 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 363 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 363 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 38 |
| Chern S.-S., Shen Z. — Riemann-Finsler Geometry | 77 |
| Besse A.L. — Einstein Manifolds | 280 |
| Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 198—199, 198(fig) |
| Kohno T. — Conformal Field Theory and Topology | 59 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 80.C, 364.B |
| Bleecker D. — Gauge Theory and Variational Principles | 142 |
| O'Neill B. — Elementary differential geometry | 323 |
| O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 66 |
| Guillemin V. — Geometric Asymptotics (Mathematical Surveys and Monographs Number 14) | 218 |
| Bitsadze A.V. — Equations of Mathematical Physics | 173 |
| O'Neill B. — The Geometry of Kerr Black Holes | 15 |
| Oprea J. — Differential Geometry and Its Applications | 412 |
| Fuchs D., Tabachnikov S. — Mathematical omnibus: Thirty lectures on classical mathematics | 281 |
| Landau L.D., Lifshitz E.M. — The classical theory of fields | 256 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 234 |
| Amari S.-I., Nagaoka H. — Methods of Information Geometry | 15 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 302 |
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 64 |
| Loomis L.H., Sternberg S. — Advanced calculus | 40 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 38 |
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 465 |
| Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 76—78 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 339 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 302 |
| Rosenberg S. — The Laplacian on a Riemannian manifold | 66, 67 |
| Isham C. — Modern Differential Geometry for Physicists | 267, 268 |
| Mackenzie K.C.H. — General Theory of Lie Groupoids and Lie Algebroids | 234 |