|
|
Результат поиска |
Поиск книг, содержащих: Tartaglia
Книга | Страницы для поиска | Bruce C.Berndt — Ramanujan's Notebooks (part 3) | 354 | Apostol T.M. — Calculus (vol 1) | 3 | Kisacanin B. — Mathematical problems and proofs. Combinatorics, Number theory, and Geometry | 39, 160 | Barbeau E.J. — Polynomials: a problem book | 126 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 32—34, 185n | Artin M. — Algebra | 543 | Hancock H. — Theory of Maxima and Minima | 16 | Lozansky E., Rousseau C. — Winning Solutions | 92 | Rouse Ball W.W. — Mathematical Recreations and Essays | 2, 18, 24, 34, 71 | Humphreys J.F., Prest M.Y. — Numbers, Groups and Codes | 181 | Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 37 | Turnbull H.W. — The Great Mathematicians | 56 | Bashmakova I.G. — Diophantus and Diophantine Equations | 49 | Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 3 | Newman J.R. (ed.) — The World of Mathematics, Volume 4 | see “Niccolo Fontana” | Chabert J.-L., Weeks C., Barbin E. — A History of Algorithms: From the Pebble to the Microchip | 511 | Dickson L.E. — History of the Theory of Numbers, Volume I: Divisibility and Primality | 9, 40 (11, 17) | Tignol J.-P. — Galois' Theory of Algebraic Equations | 13-15,17;see Fontana, Niccolo | Dudeney H.E. — Amusements in Mathematics | 25, 109, 112 | Moh T.T. — Algebra | 307 | Logsdon M.I. — A Mathematician Explains | 55 | Dudeney H.E. — Amusements in mathematics | 25, 109, 112 | Fink K. — A brief history of mathematics | 3, 49, 51, 52, 112, 115, 155, 225 | Heath Th.L. — Diophantus of Alexandria. A Study in the History of Greek Algebra | 21, 40 | Ore O. — Number theory and its history | 98 | Moh T.T. — Algebra | 307 | Audichya A. — Mathematics: Marvels and milestones | 77 | Todhunter M.A. — A history of the mathematical theory of probability : from the time of Pascal to that of Laplace | 1 | Chrystal G. — Algebra. An Elementary Textbook, Vol. 2 | i, 191 | Kline M. — Mathematics for the Nonmathematician | 8, 22, 119 f., 255, 284 | Stillwell J. — Mathematics and its history | 54, 59—62 | Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 71—72 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 72 |
|
|