|
|
Результат поиска |
Поиск книг, содержащих: Inequality, Minkowski
Книга | Страницы для поиска | Bartle R.G. — The Elements of Integration | 57 | Bartle R.G. — The Elements of Real Analysis | 69, 273 | Shorack G.R. — Probability for statisticians | 49, 53, 163 | Apostol T.M. — Mathematical Analysis | 27 (Ex. 1.25) | Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 8 | Schneider R. — Convex Bodies: The Brunn-Minkowski Theory | 317, 321 | Vaeth M. — Volterra and integral equations of vector functions | 91 | Bogachev V.I. — Measure Theory Vol.1 | 142, 226, 231 | Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | (391) | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 14, 121, 193, 296, 343 | Hansen G.A., Zardecki A., Douglass R.A. — Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications | 117 | Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 110 | Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 11 | Boas R.P. — A Primer of Real Functions | 24, 184 | Guggenheimer H.W. — Applicable Geometry | 68, 70 | Aubert G., Kornprobst P. — Mathematical Problems in Image Processing: Partial Differential Equations And the Calculus of Variations | 55 | Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 177 | Bogachev V.I. — Measure Theory Vol.2 | I: 142, 226', 231 | Demidov A.S. — Generalized Functions in Mathematical Physics: Main Ideas and Concepts | 36 | Hu S.-T. — Elements of real analysis | 230, 236 | Fabian M.J., Hajek P., Pelant J. — Functional Analysis and Infinite-Dimensional Geometry | 4 | Grimmett G., Stirzaker D. — Probability and Random Processes | 143, 319 | Aubert G., Kornprobst P. — Mathematical Problems in Image Processing: Partial Differential Equations And the Calculus of Variations | 61 | Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 161 | Browder A. — Mathematical Analysis: An Introduction | 235 | Aliprantis C. — Principles of real analysis | 256 | Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 126, 356 | Hille E. — Methods in classical and functional analysis | 90, 139 | McShane E.J., Botts T.A. — Real Analysis | 59, 164 | Vrabie I.I. — Compactness methods for nonlinear evolutions | 2 | Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 43, 61, 66 | Zeidler E. — Oxford User's Guide to Mathematics | 38 | Horn R.A. — Matrix Analysis | 265, 536 | Collatz L. — Functional analysis and numerical mathematics | 16, 32 | Apostol T. — Mathematical Analysis, Second Edition | 27 |
|
|