Авторизация
Поиск по указателям
Vrabie I.I. — Compactness methods for nonlinear evolutions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Compactness methods for nonlinear evolutions
Автор: Vrabie I.I.
Аннотация: This monograph provides a self-contained and comprehensive account of the most significant existence results obtained over the
past two decades referring to some remarkable classes of ill-posed problems governed by non-accretive operators. All the results are derived from several compactness arguments, due mainly to the author, and are suitably illustrated by examples arising from various concrete problems - for example, nonlinear diffusion, heat conduction in materials with memory, fluid dynamics, and vibrations of a string with memory. Reference is made to optimal control theory in order to emphasize the degree of applicability of abstract compactness methods. Special attention is paid to multivalued perturbations of m-accretive operators; this case is analyzed under appropriate assumptions in order to allow the use of the general results in the study of some specific problems of great practical interest: reaction-diffusion and closed loop systems. Some biographical comments and open problems are also included. This new edition contains a number of improvements, corrections and insertions which both simplify and update the material. The book will be of interest to graduate students and specialists working in abstract evolution equations, partial differential equations, reaction-diffusion systems and ill-posed problems. A knowledge of topology, functional analysis and ordinary differential equations to undergraduate level is assumed.
Язык:
Рубрика: Математика /
Серия: Сделано в холле
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1987
Количество страниц: 344
Добавлена в каталог: 28.04.2013
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
mulian 6
Adams 12 298 309
Aizicovici 306 309
Alaoglu 7
Ames 37 309
Arino 6 7 8 301 305 309
Aris 146 309
Arrhenius 146
Arzela 1 10 57 62 63 64 83 86 89 168
Ascoli 1 10 57 62 63 64 83 86 89 168
Attouch 142 143 301 309
Aubin 301 310
Badii 300 305 310
Ball 39 40 298 310
Banach 16 44
Banach space, uniformly convex 18
Baras 64 299 300 310
Barbu 13 17 18 21 26 27 28 29 30 35 38 41 44 58 113 160 174 186 296 298 299 301 310
Bellman 3 134 194 237 238 271 279 282
Benilan 25 34 35 37 41 298 299 311
Bensoussan 308 311
Berens 256 312
Biroli 306 311
Boltzmann 24
Bounded domain with smooth boundary 12
Bourbaki 7
Brezis, D. 256 306 311
Brezis, H. 22 23 41 42 45 53 54 57 186 293 298 299 311
Browder 39 144 180 299 312
Buniakowsky 2 226
Butzer 256 312
Carath odory 134 135 136 141 142 143 152 161 178 179 180 181 182 186 191 305
Castaing 301 312
Cauchy 2 90 118 181 201 226 234 236 237 249 253
Cellina 301 310
Cioranescu 18 298 312
Clarkson 18
Crandall 30 34 38 298 299 306 311 312 313
Damlamian 142 143 301 309
Deimling 16 298 313
Diaz 300 301 305 310 313
Diestel 8 11 298 313
Dirichlet 23 105 256
Discretization ( ) 33
Dunford 1 11 321
Eberlein 6
Edwards 6 8 10 11 298 313
Effective domain 26
Egoroff 291
Evans 34 298 312
Fatou 28 77 109 114
Fermat 22
Fitzgibbon 307 313
FOURIER 51
Fujita 263 306 313
Function, -demiclosed 199
Function, A-demiclosed 272
Function, A-dominated 272
Function, compact type, of 57
Function, conjugate 28
Function, convex 25
Function, indicator 27
Function, Lipschitz on bounded subsets 43
Function, lower semicontinuous (l. s. c.) 13
Function, proper 25
Function, upper semicontinuous (u. s. c.) 13
Gautier 6 7 8 301 305 309
Generalized directional derivative 43
Generalized gradient 44
Goursat 308 311
Green 22 23 97 249 251
Gripenberg 306 313
Gronwall 3
Gutman 12 79 82 300 301 314
H lder 2 11 210 211 239
Hahn 16 44
Hale 307 314
Hardy 3 220 224 226 298 314
Hassan 300 310
Hazan 308 315
Hille 5 7 8 298 299 301 314
Hirano 300 314
Inequality, Bellman 3
Inequality, Buniakowsky — Schwarz 2
Inequality, Cauchy with e 2
Inequality, Gronwall 3
Inequality, H lder 2
Inequality, Hardy 3
Inequality, Minkowski 2
Inequality, Tartar 2
Intermediate interpolation class 214
Kakutani 7
Kato 18 298 306 313 314
Kobayashi 34 298 314
Kolmogorov 1 11
Kondrashov 1 12
Konishi 57 299 314
Krein 308 315
Kuratowski 116 301 315
Ky Fan 308
Ladyzhenskaja 306 315
Lakshmikantham 14 15 34 35 2 98 315
Lasota 144 301 315
Lax 299
Lebesgue 77 93 179 286
Leeia 14 15 34 35 298 315
Lewis 146
Liggett 30 38 298 312
Lions 308 311
Littlewood 3 298 314
Local existence property 125
Londen 306 313
Luzin 291
Mapping, bounded 121
Mapping, compact 163
Mapping, continuous 118
Mapping, duality 16
Mapping, k-radial truncate of a 153
Mapping, local integrability property (having) 127
Mapping, measurable 116
Mapping, p — Carath odory 134
Mapping, positively sublinear 130
Mapping, superposition 148
Mapping, weakly continuous 118
Mapping, weakly p — Carath odory 134
Martin 298 302 305 315
Mazur 5 8 302
Maz’ya 12 315
Milman 18
Minkowski 2 94 281
Minty 26
Mitidieri 300 306 307 315
Moreau 26
Morimoto 263 313
Nagumo 305
Navier 195 256 306
Neumann 24 256
Nohel 306 313
Operator, accretive 19
Operator, compact 49
Operator, m-accretive 21
Operator, resolvent 20
Operator, superposition on 91
Operator, superposition, or natural realization 25
Operator, well defined on 91
Operator, well defined on 91
Operator, Yosida approximation 20
Opial 144 301 315 322
Otani 305 306 316
P lya 3 298 314
Pavel 15 17 20 298 299 301 305 316
Pazy 39 43 53 55 85 144 180 256 298 299 300 305 306 311 316
Penot 6 7 8 301 305 309
Pettis 1 7 11 301
Phillips 5 7 8 298 299 301 314
Pierre 302 317
Plant 49 317
Popescu 300 317
Prater 146
Precupanu 13 29 58 298 310
Rellich 1 12
Riesz 1 11
Ryll — Nardzewski 116 301 315
Sato 15 16 317
Schauder 8 268 287 308
Schechter 302 317
Schiaffino 305 317
Schwarz 2 226
Selection 116
Semi-inner product, lower 14
Semi-inner product, normalized lower 14
Semi-inner product, normalized upper 14
Semi-inner product, upper 14
Semigroup, compact 50
Semigroup, equicontinuous 52
Semigroup, generated by -A 38
Semigroup, locally weakly equicontinuous 84
Semigroup, nonexpansive mappings, of 37
Semigroup, weakly equicontinuous 52
Set, compact 5
Set, equicontinuous 9
Set, p-equiintegrable 11
Set, precompact 5
Set, relatively compact 5
Set, relatively sequentially compact 5
Set, sequentially compact 5
Set, uniformly integrable 10
Set, weakly equicontinuous 9
Sobolev 112 247 250
Solution, generalized 30
Solution, integral 32
Solution, mild 34 124 265 283
Solution, mild in the sense of Browder 39
Solution, noncontinuable 125 232 2 70
Solution, p-approximate 136
Solution, strong 29 125 150 265 284
Solution, weak in the sense of Ball 39
Stefan 24 101
Stokes 195 256 306
Subdifferential 26
Tartar 2 105 192
Temam 306 318
Tesei 300 305 310
Thiele 146
Topology, strong 4
Topology, weak 4
Topology, weak star 4
Travis 307 318
Tychonoff 8 308
Uhl 8 11 298 313
Valadier 301 312
Veron 43 299 300 310 318
Vescan 308 318
Vitali 93 94
Volterra 71 264 265 272
Von Wahl 260 263 306 318
Vrabie 299 300 301 302 305 306 307 308 313 315 316 318
Vulikh 93 291 320
Webb 307 318
Weil 1 11
Yosida 5 7 18 20 45 298 320
Z linescu 18 320
Zorn 126 127 233 323
Реклама